Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T06:41:05.449Z Has data issue: false hasContentIssue false

Electroluminescence as a Function of Electric Field and Temperature in Amorphous Silicon-Carbon Based p-i-n Structures

Published online by Cambridge University Press:  28 February 2011

A. B. Pevtsov
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
A. G. Pilatov
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
N. A. Feoktistov
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
A. V. Zherzdev
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
S. M. Karabanov
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
T. Muschik
Affiliation:
Technical University of Munich, Physics Department E16, W-8046 Garching, Germany.
D. Zrenner
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
R. Schwarz
Affiliation:
Technical University of Munich, Physics Department E16, W-8046 Garching, Germany.
Get access

Abstract

Electroluminescence at room temperature with a peak energy between 1.6 and 1.8 eV is observed in a-SiC:H p-i-n devices containing thin injection layers of high bandgap a-SiC:H. The temperature dependence of electroluminescence between 80 K and 320 K is much weaker than expected from the photoluminescence signal. No shift of the electroluminescence spectrum is observed up to voltages of 20 V applied across a 110 nm thick device. The results are compared to well-known features of electroluminescence in a-Si:H devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kruangam, D., Endo, T., Deguchi, M., Guang-Pu, W., Okamoto, H., and Hamakawa, Y., Optoelectronics - Devices and Technologies 1 (1986) 67.Google Scholar
[2] Hamakawa, Y., Kruangam, D., Toyama, T., Yoshimi, M., Paasche, S., and Okamoto, H., Optoelectronics - Devices and Technologies 4 (1989) 281.Google Scholar
[3] Paasche, S.M., Toyama, T., Okamoto, H., and Hamakawa, Y., IEEE Trans. Electr. Dev. 36 (1989) 2895.Google Scholar
[4] Carius, R., Mat. Res. Soc. Symp. Proc. 192 (1990) 101.Google Scholar
[5] Wang, K., Han, D., Zvanut, M.E., and Silver, M., Phil. Mag. B63 (1991) 175.Google Scholar
[6] Alvarez, F., Fragnito, H.L., and Chambouleyron, I., J. Appl. Phys. 63 (1988) 244.Google Scholar
[7] Yoshimi, M., Shimizu, H., Hattori, K., Okamoto, H., and Hamakawa, Y., Optoelectronics - Devices and Technologies 7 (1992) 69.Google Scholar
[8] Zherzdev, A.V., Karpov, V.G., and Pevtsov, A.B., Sov. Phys. Semicond. 26 (1992) 167, (in Russian).Google Scholar
[9] Sze, S.M., Physics of Semiconductor Devices, (Wiley-Interscience, New York, 1969).Google Scholar
[10] Volkov, A.S. et al., J. of Non-Cryst. Solids 114 (1989) 407.Google Scholar
[11] Liedtke, S. et al., J. of Non-Cryst. Solids 114 (1989) 522.Google Scholar
[12] O'Reilly, E.P., J. of Non-Cryst. Solids 97 & 98 (1987) 1095.Google Scholar
[13] Robertson, J., Adv. Phys. 35 (1986) 317.Google Scholar
[14] Monroe, D., Phys. Rev. Lett. 54 (1985) 145.Google Scholar