Skip to main content Accessibility help
×
Home

Electrokinetic Phenomena in Porous Media

  • David B. Pengra (a1) and Po-Zen Wong (a1)

Abstract

Electrokinetic phenomena, such as electroosmosis (fluid-flow induced by applied electric fields) and streaming potential (the complementary process) are known to exist in brine-saturated porous media, but are very difficult to measure. With modern instrumentation and an ac method, we can now determine these transport coefficients accurately, and use them to characterize the permeability k 1, the effective throat radius Re , and the electric potential at the slip-plane, or ζ-potential. Our study shows that permeability can be determined by two different means: by combining the dc values of the streaming potential, electroosmotic pressure and conductivity; or from the frequency response of ac electroosmosis alone. The high sensitivity of the method allows us to measure k over the 0.1–10,000 millidarcy range with less than lOkPa applied pressure. This article reviews some of the basics of electrokinetics and describes our methods. We also discuss effects of brine salinity and possible effects due to the fractal nature of the pore surface.

Copyright

References

Hide All
1. Wong, P.-z., MRS Bull. 19 (5) p.32 (1994).
2. Wong, P.-z., Koplik, J., and Tomanic, J. P., Phys. Rev. B 30, 6606 (1984).
3. Katz, A. J. and Thompson, A. H., Phys. Rev. B 34, 8179 (1986).
4. Kenyon, W. E., Day, P. I., Straley, C., and Willemsen, J. F., SPE Paper No. 15643 (1986).
5. Thompson, A. H., Sinton, S. W., Huff, S. L., Katz, A. J., Rashke, R. A., and Gist, G. A., J. Appl. Phys. 65, 3259 (1989).
6. Li, S. X., Pengra, D. B., and Wong, P.-z., Phys. Rev. E 51, 5748 (1995).
7. Saxén, U., Ann. Physik und Chemie 47, 46 (1892).
8. Onsager, L., Phys. Rev. 37, 405 (1931); 38, 2265 (1931).
9. Kortüm, G., Treatise on Electrochemistry, 2nd revised English edition (Elsevier, Amsterdam, 1965).
10. Johnson, D. L., Koplik, J. and Schwartz, L. M., Phys. Rev. Lett. 57, 2564 (1986).
11. See, for example, deGroot, S. R. and Mazur, P., Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).
12. Wyllie, M. R. J., Petro. Trans. AIME 192, T.P.2940 (1951).
13. See, for example, Horowitz, P. and Hill, W., The Art of Electronics, 2nd ed. (Cambridge University, New York, 1983), pp. 628631.
14. LeMehaute, A. and Crepy, G., Solid State Ionics 9–10, 17 (1983).
15. Pajkossy, T., J. Electroanal. Chem. 364, 111 (1994).
16. Cao, Q.-z., Wong, P.-z. and Schwartz, L. M., Phys. Rev. B 50, 5771 (1994).
17. Plona, T. J. and Johnson, D. L., in 1980 Ultrasonics Symposium, 868 (IEEE, 1980).
18. Pengra, D. B., Li, S. X., Shi, L., and Wong, P.-z., in Dynamics in Small Confining Systems II, Mat. Res. Soc. Symp. Proc. 366, Drake, J. M., Klafter, J., Kopelman, R., Troian, S. M., eds., pp. 201206 (MRS, Pittsburg, 1995).
19. Wong, P.-z., Physics Today 41, No. 12, 24 (1988).
20. Wong, P.-z., Howard, J., and Lin, J.-S., Phys. Rev. Lett. 57, 637 (1986).
21. Thompson, A. H., Katz, A. J. and Krohn, C. E., Adv. in Phys. 36, 625 (1987).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed