Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T02:59:47.971Z Has data issue: false hasContentIssue false

Electrochromics and Thermochromics for Energy Efficient Fenestration: New Applications Based on Transparent Conducting Nanoparticles

Published online by Cambridge University Press:  07 October 2013

C. G. Granqvist
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
İ. Bayrak Pehlivan
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
Y.-X. Ji
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
S.-Y. Li
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
E. Pehlivan
Affiliation:
ChromoGenics AB, Märstagatan 4, SE-75323 Uppsala, Sweden
R. Marsal
Affiliation:
ChromoGenics AB, Märstagatan 4, SE-75323 Uppsala, Sweden
G. A. Niklasson
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
Get access

Abstract

This paper summarizes some recent advances for electrochromic and thermochromic fenestration. For the former application, we consider a polymer-laminated construction and show that the addition of nanoparticles to the electrolyte can enhance its ionic conductivity (with fumed silica) and quench the near-infrared transmittance which transmits solar energy but is not important for visible light (with ITO nanoparticles). Regarding thermochromics, we discuss recent experimental and theoretical work on Mg-doped VO2, where the doping lowers the luminous absorptance, and on measurements applied to Al2O3-coated VO2 with good stability with regard to high-temperature treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, G. B. and Granqvist, C. G., Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment (CRC Press, Boca Raton, 2010).CrossRefGoogle Scholar
US Census Bureau, Washington, DC, USA; http://www.census.gov/main/www/popclock.html.Google Scholar
IPCC, in: Climate Change 2007: Contribution to Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Metz, B., Davidson, O. R., Bosch, P., Dave, R. and Meyer, L. A. (Cambridge University Press, Cambridge, UK, 2007).Google Scholar
Heisler, G. M. and Brazel, A. J., in: Urban Ecosystem Ecology, edited by Aitkenhead-Peterson, J. and Volder, A. (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA, 2010), Agronomy Monograph 55.Google Scholar
Basu, R. and Samet, J. M., Epidemiol. Rev. 24, 190 (2002).CrossRefGoogle Scholar
UNEP Buildings and Climate Change: Status, Challenges and Opportunities (United Nations Environment Programme, Paris, France, 2007).Google Scholar
Glicksman, L.R., Phys. Today (July), 35 (2008).CrossRefGoogle Scholar
Richter, B., Goldston, D., Crabtree, G., Glicksman, L., Goldstein, D., Greene, D., Kammen, D., Levine, M., Lubell, M., Savitz, M., Sperling, D., Schlachter, F. and Scofield, J., Dawson, J., Rev. Mod. Phys. 80, S1 (2008).CrossRefGoogle Scholar
2010 Buildings Energy Data Book (U.S. Department of Energy, Washington, USA, 2011); http://buildingsdatabook.eere.energy.gov/.Google Scholar
Leech, J. A., Nelson, W. C., Burnett, R. T., Aaron, S. and Raizenne, M. E., J. Expo. Anal. Environ. Epidemiol. 12, 427 (2002).CrossRefGoogle Scholar
Eichholtz, P., Kok, N. and Quigley, J. M., Am. Econ. Rev. 100, 2492 (2010).CrossRefGoogle Scholar
Heshong, L., Wright, R. L. and Okura, S., J. Illum. Eng. Soc. 31, 21, 110 (2002).Google Scholar
Granqvist, C. G., Appl. Opt. 20, 2606 (1981).CrossRefGoogle Scholar
Wyszecki, G. and Stiles, W. S., Color Science: Concepts and Methods, Quantitative Data and Formulae, 2 nd ed. (Wiley, New York, NY, USA, 2000).Google Scholar
ASTM G173-03 Standard Tables of Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on a 37° Tilted Surface, in: Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, USA, 2008, Vol. 14.04; http://rredc.nrel.gov/solar/spectra/am1.5.Google Scholar
Granqvist, C. G., Crit. Rev. Solid State Mater. Sci. 16, 291 (1990).CrossRefGoogle Scholar
Lampert, C. M. and Granqvist, C. G., Large-Area Chromogenics: Materials and Devices for Transmittance Control (SPIE – The International Society for Optical Engineering, Bellingham, WA, 1990), SPIE Institutes for Advanced Optical Technologies, Vol. IS4.Google Scholar
Clear, R. D., Inkarojrit, V. and Lee, E. S., Energy Buildings 38, 758 (2006).CrossRefGoogle Scholar
Lee, E. S., Selkowitz, S. E., Clear, R. D., DiBartolomeo, D. L., Klems, J. H., Fernandes, L. L., Ward, G.J., Inkarojrit, V. and Yazdanian, M., Advancement of Electrochromic Windows (California Energy Commission, PIER, 2006); CEC-500-2006-052.CrossRefGoogle Scholar
Lee, E. S., Claybaugh, E. S. and LaFrance, M., Energy Buildings 47, 267 (2012).CrossRefGoogle Scholar
Zinzi, M., Building Environment 41, 1262 (2006).CrossRefGoogle Scholar
Gillaspie, D. T., Tenent, R. C. and Dillon, A. C., J. Mater. Chem. 20, 9585 (2010).CrossRefGoogle Scholar
Azens, A. and Granqvist, C. G., J. Solid State Electrochem. 7, 64 (2003).CrossRefGoogle Scholar
Jonsson, A. and Roos, A., Solar Energy 84, 1 (2010).CrossRefGoogle Scholar
Granqvist, C. G., Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, The Netherlands, 1995).Google Scholar
Granqvist, C. G., Solar Energy Mater. Solar Cells 99, 1 (2012).CrossRefGoogle Scholar
Baetens, R., Jelle, B. P. and Gustavsen, A., Solar Energy Mater. Solar Cells 94, 87 (2010).CrossRefGoogle Scholar
Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H. and Hart, R., Solar Energy Mater. Solar Cells 96, 1 (2012).CrossRefGoogle Scholar
Andersson, A. M., Granqvist, C. G. and Stevens, J. R., Appl. Opt. 28, 3295 (1989).CrossRefGoogle Scholar
Passerini, S., Scrosati, B., Gorenstein, A., Andersson, A. M. and Granqvist, C. G., J. Electrochem. Soc. 136, 3394 (1989).CrossRefGoogle Scholar
Granqvist, C. G., Mater. Res. Soc. Symp. Proc. 1315, 89 (2012).Google Scholar
Bayrak Pehlivan, İ., Granqvist, C. G., Marsal, R., Georén, P. and Niklasson, G. A., Solar Energy Mater. Solar Cells 98, 465 (2012).CrossRefGoogle Scholar
Bayrak Pehlivan, İ, Runnerstrom, E. L., Li, S.-Y., Niklasson, G. A., Milliron, D. J. and Granqvist, C. G., Appl. Phys. Lett. 100, 241902 (2012).CrossRefGoogle Scholar
Niklasson, G. A. and Granqvist, C. G., J. Mater. Chem. 17, 127 (2007).CrossRefGoogle Scholar
Bayrak Pehlivan, İ., Marsal, R., Georén, P., Granqvist, C. G. and Niklasson, G. A., J. Appl. Phys. 108, 074102 (2010).CrossRefGoogle Scholar
Bayrak Pehlivan, İ., Marsal, R., Niklasson, G. A., Granqvist, C. G. and Georén, P., Solar Energy Mater. Solar Cells 94, 2399 (2010).CrossRefGoogle Scholar
Bayrak Pehlivan, İ., Georén, P., Marsal, R., Granqvist, C. G. and Niklasson, G. A., Electrochim. Acta 57, 201 (2011).CrossRefGoogle Scholar
Choi, S.-I., Nam, K. M., Park, B. K., Seo, W. S. and Park, J. T., Chem. Mater. 20, 2609 (2008).CrossRefGoogle Scholar
Llordes, A., Hammack, A. T., Buonsanti, R., Tangirala, R., Aloni, S., Helms, B. A. and Milliron, D. J., J. Mater. Chem. 21, 11631 (2011).CrossRefGoogle Scholar
Bayrak Pehlivan, İ., Marsal, R., Pehlivan, E., Runnerstrom, E. L., Milliron, D. J., Granqvist, C. G. and Niklasson, G. A. (2013), to be published.Google Scholar
Saeli, M., Piccirillo, C., Parkin, I. P., Binions, R. and Ridley, I., Energy Buildings 42, 1666 (2010).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., Thin Solid Films 520, 3823 (2012).CrossRefGoogle Scholar
Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., J. Appl. Phys. 108, 063525 (2010).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., J. Appl. Phys. 109, 113515 (2011).CrossRefGoogle Scholar
Mlyuka, N. R., Niklasson, G. A. and Granqvist, C. G., Appl. Phys. Lett. 95, 171909 (2009).CrossRefGoogle Scholar
Hu, S., Li, S.-Y., Ahuya, R., Granqvist, C. G., Hermansson, K., Niklasson, G. A. and Scheicher, R. H., Appl. Phys. Lett. 101, 201902 (2012).Google Scholar
Heyd, J., Scuseria, G. E. and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003); erratum : 124, 219906 (2006).CrossRefGoogle Scholar