Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-29T07:51:15.519Z Has data issue: false hasContentIssue false

Electrochromic Properties of Nickel Oxide Electrodes

Published online by Cambridge University Press:  28 February 2011

R. Pileggi
Affiliation:
Dipartimento di Chimica, Università di Roma'La Sapienza' Rome, Italy ENIRICERCHE, Monterotondo, Italy
B. Scrosati
Affiliation:
Dipartimento di Chimica, Università di Roma'La Sapienza' Rome, Italy ENIRICERCHE, Monterotondo, Italy
S. Passerini
Affiliation:
Dipartimento di Chimica, Università di Roma'La Sapienza' Rome, Italy ENIRICERCHE, Monterotondo, Italy
Get access

Abstract

Nickel oxide sputtered electrodes can undergo a reversible lithium intercalationdeintercalation process which is accompanied by a net electrochromic effect. The characteristics of this type of electrode and the mechanism of the related electrochromic process are discussed on the basis of results obtained by cyclic voltammetry and optical transmittance. The results show that nickel oxide is electrochromically activated by insertion of lithium in the oxide structure. The lithium intercalation process may be promoted by cyclic voltammetry or, more extensively, by polarizing cathodically the nickel oxide electrode in a non-aqueous electrolyte containing a lithium salt. Activated nickel oxide electrodes are of considerable interest for the realization of new types of efficient solid state electrochromic windows..

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vincent, C.A., Bonino, F., Lazzari, M. and Scrosati, B., Modern Batteries, (Arnold Publ. London 1987).Google Scholar
2. Svensson, J.S.E.M. and Granqvist, G.C., Appl. Phys. Lett., 23, 1566, (1986).Google Scholar
3. Fantini, M. and Gorenstein, A., Solar Energy Mat., 16, 487, (1987).Google Scholar
4. Gorenstein, A., Decker, F., Estrada, W., Esteves, C., Andersson, A., Passerini, S., Pantaloni, S. and Scrosati, B., J. Electroanal. Chem.,.277, 277 (1990).CrossRefGoogle Scholar
5. Scarminio, J., Estrada, W., Andersson, A., Gorenstein, A. and Decker, F., J.Electrochem. Soc., (submitted).Google Scholar
6. Passerini, S., Scrosati, B., Gorenstein, A., J. Electrochem. Soc., 131, 3297 (1990).Google Scholar
7. Eriksson, T. and Granqvist, G.C., J. Appl. Phys., 60, 2081, (1986).Google Scholar
8. Decker, F., Passerini, S., Pileggi, R. and Scrosati, B., J.Electrochem.Soc. (in press)Google Scholar