Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T01:49:56.867Z Has data issue: false hasContentIssue false

Electrochemical-microscopy analysis of bio-functionalized diamond surfaces

Published online by Cambridge University Press:  01 February 2011

Hiroshi Uetsuka
Affiliation:
hiroshi.uetsuka@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Diamond Research Center, Central2, 1-1-1, Umezono, Tsukuba, 3058568, Japan
Nianjun Yang
Affiliation:
nianjun-yang@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
Norio Tokuda
Affiliation:
n-tokuda@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
Christoph E. Nebel
Affiliation:
christoph.nebel@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
Get access

Abstract

DNA sensors fabricated on single-crystalline B-doped diamond (SBDD) electrodes were characterized by scanning electrochemical microscopy (SECM). These experiments show that circular arranged DNA sensors of typically 2 mm diameter show some spatial variations in electrochemical response. The variation of the diamond electrode with respect to DNA bonding is electrochemically characterized and discussed in the context of ion attraction/repulsion by the negatively charged backbones of DNA and the negatively charged diamond surface. Our results show that repulsive forces affect the mediator propagation of Fe(CN)64- in the close vicinity of the DNA layer which can be used to investigate DNA density variations on sensor areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, W., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J.E.,. Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, J.N. Jr, Smith, L.M., and Hamers, R.J., Nat. Mater. 1, 253 (2002).10.1038/nmat779Google Scholar
2. Wang, J., Firestone, M.A., Auciello, O., and Carlisle, J.A., Langmuir 20, 11450 (2004).Google Scholar
3. Shin, D., Tokuda, N., Rezek, B., Nebel, C.E., Electrochem. Comm. 8, 844 (2006).Google Scholar
4. Uetsuka, H., Shin, D., Tokuda, N., Saeki, K., Nebel, C.E., Langmuir 23, 3466 (2007).10.1021/la063241eGoogle Scholar
5. Nebel, C.E., Rezek, B., Shin, D., Uetsuka, H., Yang, N., J. Phys. D: Appl. Phys. 40, 6443 (2007).Google Scholar
6. Wang, J., Firestone, M.A., Auciello, O., and Carlisle, J.A., Langmuir 20, 11450 (2004).Google Scholar
7. Roberts, W.S., Lonsdale, D.J., Griffiths, J., Higson, S.P.J., Biosens. Bioelectron. 23, 301 (2007).10.1016/j.bios.2007.06.020Google Scholar
8. Turcu, F., Schulte, A., Hartwich, G., Schuhmann, W., Angew. Chem. Int. Ed. 43, 3482 (2000).Google Scholar