Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T03:55:02.036Z Has data issue: false hasContentIssue false

Electrochemical Tailoring and Optical Investigation of Advanced Refractive Index Profiles in Porous Silicon Layers

Published online by Cambridge University Press:  15 February 2011

S. Zangooie
Affiliation:
Laboratory of Applied Optics, Department of Physics and Measurement Technology Linköping University, SE-581 83 Linköping, Sweden
R. Jansson
Affiliation:
Laboratory of Applied Optics, Department of Physics and Measurement Technology Linköping University, SE-581 83 Linköping, Sweden
H. Arwin*
Affiliation:
Laboratory of Applied Optics, Department of Physics and Measurement Technology Linköping University, SE-581 83 Linköping, Sweden
*
Corresponding author: han@ifm.liu.se
Get access

Abstract

Porosity depth profiles with exponential or sinusoidal shape were fabricated electrochemically in crystalline silicon using time-variable current densities and studied employing variable angle spectroscopic ellipsometry. Since volume porosity in porous silicon depends on the current density, it was possible to electrochemically tailor porosity depth profiles, which in a first approximation resembled the time modulation of the applied current. Optical characterization of the samples were realized using multilayer optical models and the Bruggeman effective medium approximation allowing variations of the index of refraction according to the applied current density profiles. The analysis also revealed deviations from desired profiles in terms of in-depth inhomogeneities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett. 57, 1406 (1990).Google Scholar
2. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
3. Zangooie, S., Jansson, R., and Arwin, H., J. Vac. Sci. Technol. A 16, 2901 (1998).Google Scholar
4. Zangooie, S., Jansson, R., and Arwin, H., J. Appl. Phys., In press.Google Scholar
5. Grtining, U. and Lehmann, V., Photonic Band Gap Materials, Kluwer Academic Publishers, Netherlands, 1996, p. 453.Google Scholar
6. Zangooie, S., Bjorklund, R., and Arwin, H., Sens. Actuators B 43, 168 (1997).Google Scholar
7. Laurell, T., Drott, J., Rosengren, L., and Lindstrdm, K., Sens. Actuators B 31, 161 (1996).Google Scholar
8. Janshoff, A., Dancil, K.S., Steinem, C., Greiner, D.P., Lin, V.S.-Y., Gurtner, C., Motesharei, K., Sailor, M.J., and Ghadiri, M.R., J. Am. Chem. Soc. 120, 12108 (1998).Google Scholar
9. Smith, R.L. and Collins, S.D., J. Appl. Phys. 71, R1 (1992).Google Scholar
10. Zangooie, S., Jansson, R., and Arwin, H., Appl. Surf. Sci. 136, 123 (1998).Google Scholar
11. Loni, A., Canham, L.T., Berger, M.G., Arens-Fischer, R., Miiunder, H., Ltith, H., Arrand, H.F., and Benson, T.M., Thin Solid Films 276, 143 (1996).Google Scholar
12. Zangooie, S., Bjorklund, R., and Arwin, H., J. Electrochem. Soc. 144, 4027 (1997).Google Scholar
13. Zangooie, S., Bjorklund, R., and Arwin, H., Thin Solid Films 313–314, 827 (1998).Google Scholar
14. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, North-Holland, New York, 1997.Google Scholar
15. Billat, S., Thönissen, M., Arens-Fischer, R., Berger, M.G., Krüger, M., and Lüth, H., Thin Solid Films 297, 22 (1997).Google Scholar
16. Thönissen, M., Berger, M.G., Billat, S., Arens-Fischer, R., Krüger, M., Lüth, H., Theiß, W., Hillbrich, S., Grosse, P., Lorendel, G., and Frotscher, U., Thin Solid Films 297, 92 (1997).Google Scholar