Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-28T11:52:56.766Z Has data issue: false hasContentIssue false

Electrical transport in porous silicon from improved complex impedance analysis

Published online by Cambridge University Press:  17 March 2011

B. Remaki
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS-INSAL 5511), INSA de Lyon, Bat. 502, Avenue A. Einstein, F - 69621 Villeurbanne cedex, France
S. Perichon
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS-INSAL 5511), INSA de Lyon, Bat. 502, Avenue A. Einstein, F - 69621 Villeurbanne cedex, France
V. Lysenko
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS-INSAL 5511), INSA de Lyon, Bat. 502, Avenue A. Einstein, F - 69621 Villeurbanne cedex, France
D. Barbier
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS-INSAL 5511), INSA de Lyon, Bat. 502, Avenue A. Einstein, F - 69621 Villeurbanne cedex, France
Get access

Abstract

An improved analysis of the electrical transport parameters in meso-porous silicon is presented. Our approach is based on a separate contribution of the crystallites and their interconnections to the total impedance of meso-porous silicon layers. Meso-porous silicon morphology exhibits a columnar structure without quantum confinement. The electrical conduction is thus, partially due to the bulk conductivity within continuous paths of crystallites. The samples were realized on 0.02ω-cm p-type Si substrates. Porous silicon layers of 100µm of thickness and 50% of porosity were inserted in Al/SiO2/porous-Si/Si structures. Their electronic transport parameters were determined using complex impedance measurements. A frequency range of 102 - 107 Hz was used allowing an accurate determination of the impedance components. Combined with thermal stimulation, theses measurements provide a powerful tool for the interpretation of basic properties such as the carriers density in the crystallites and the trapping mechanisms. Our results were interpreted in terms of free carriers conduction in partially compensated crystallites prevailing at low frequencies. At high frequencies (above 10 kHz), the electrical conductivity is mainly controlled by hopping transport on localized states in the chaotic porous structure. Finally, the free carriers mobility, evaluated from SCLC measurement is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl.Phys. Lett., 57, 1046 (1990)Google Scholar
2. Bomchil, G., Halimaoui, A., Herino, R., Microelectr. Eng. 8, 293 (1988).Google Scholar
3. Halimaoui, A., in Porous Silicon : Science and Technology, edited by Vial, J.-C. and Derrien, J., Springer Verlag, Berlin Heidelberg and Les Editions de Physique, Les Ulis, 33 (1995)Google Scholar
4. See for a complete revue, properties of porous silicon, edited by Canham, L. T., Emis 18, Inspec, UK (1997)Google Scholar
5. Steiner, P., Lang, W., Thin Solid Films, 255, 52 (1995).Google Scholar
6. Roussel, P., Lysenko, V., Remaki, B., Delhomme, G., Dittmar, A., and Barbier, D., Sens. And Act. A, 74, 100 (1999).Google Scholar
7. Lysenko, V., Perichon, S., Remaki, B., B; Champagnon, and Barbier, D., J. of Appl. Phys. 86, 6841 (1999).Google Scholar
8. Lehman, V., Hofmann, H., Möller, F., Gruning, U., Thin Solid Films, 255, 20 (1995)Google Scholar
9. Polissiki, I. G., Kovalev, D., Dollinger, G., Sulima, T., Koch, G., Physica B, 273, 951 (1999)Google Scholar
10. Chorin, M. Ben, Möller, F., Koch, F., Schirmacher, W., and Eberhard, M., Phys. Rev. B, 4, 2199 (1995)Google Scholar
11. Simons, A.J., in properties of porous silicon, edited by Canham, L. T., Emis 18, Inspec, UK 176 (1997).Google Scholar
12. Gutmann, F. and Lyons, L.E., Organic Semiconductors, Wiley, New York, (1967).Google Scholar