Skip to main content Accessibility help

Electrical Resistance of Single-Wall Carbon Nanotubes with Determined Chiral Indices

  • Letian Lin (a1), Lu-Chang Qin (a2), Sean Washburn (a3) and Scott Paulson (a4)


The properties of a carbon nanotube (CNT), in particular a single-wall carbon nanotube (SWNT), are highly sensitive to the atomic structure of the nanotube described by its chirality (chiral indices). We have grown isolated SWNTs on a silicon substrate using chemical vapor deposition (CVD) and patterned sub-micron probes using electron beam lithography. The SWNT was exposed by etching the underlying substrate for transmission electron microscope (TEM) imaging and diffraction studies. For each individual SWNT, its electrical resistance was measured by the four-probe method at room temperature and the chiral indices of the same SWNT were determined by nano-beam electron diffraction. The contact resistances were reduced by annealing to typically 3-5 kΩ. We have measured the I-V curve and determined the chiral indices of each nanotube individually from four SWNTs selected randomly – two are metallic and two are semiconducting. We will present the electrical resistances in correlation with the carbon nanotube diameter as well as the band gap calculated from the determined chiral indices for the semiconducting carbon nanotubes. These experimental results are also discussed in connection with theoretical estimations.



Hide All
1. Biercuk, M. J., Ilani, S., Marcus, C. M. and McEuen, P. L., “Electrical Transport in Single-Wall Carbon Nanotubes”, Science of Fullerenes and Carbon Nanotubes, eds. Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C.. (Academic, 1996) pp.455493.
2. Qin, L.-C., Rep. Prog. Phys. 69, 2761 (2006).
3. Anantram, M. P. and Leonard, F., Rep. Prog. Phys. 69, 507 (2006).
4. Yorikawa, H. and Muramatsu, S., Phys. Rev. B 52, 2723 (1995).
5. Charlier, J. C., Blasé, X. and Roche, S., Rev. Mod. Phys. 79, 677 (2007).
6. Hertal, T., Walkup, R. and Avouris, P., Phys. Rev. B 58, 13870 (1998).
7. Wong, E., Sheehan, P. and Lieber, C., Science 277, 1971 (1997).
8. Li, Y., Liu, J., Wang, Y. Q. and Wang, Z. L., Chem. Mater. 13, 1008 (2001).
9. Hall, A. R., An, L., Liu, J., Vicci, L., Falvo, M. R., Supefine, R. and Washburn, S., Phys. Rev. Lett. 96, 256102 (2006).
10. Liu, Z. and Qin, L.-C., Chem. Phys. Lett. 408, 75 (2005).
11. Dekker, C., Phys. Today 52, 22 (1999).
12. White, C. T. and Todorov, T. N., Nature 393, 240 (1998).
13. Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J. and Avouris, P., Phys. Rev. Lett. 92, 046401 (2004).
14. Hall, A. R., Falvo, M. R., Superfine, R. and Washburn, S., Nature Nanotechnology 2, 413 (2007).
15. Tomanek, D. and Schluter, M. A., Phys. Rev. Lett. 67, 2331 (1991).
16. Yao, Z., Kane, C. L. and Dekker, C., Phys. Rev. Lett. 84, 2941 (2000).
17. Perebeions, V., Terso, J. and Avouris, P., Phys. Rev. Lett. 94, 86802 (2005).
18. Mann, D., Javey, A., Kong, J., Wang, Q. and Dai, H. J., Nano Lett. 3, 1541 (2003).
19. Naeemi, A. and Meindl, J. D., IEEE Elec. Dev. Lett. 28, 135 (2007).
20. Yang, L., Anantram, M. P., Han, J. and Lu, J. P., Phys. Rev. B 60, 13874 (1999).
21. Tombler, T. W., Zhou, C., Alexseyev, L., Dai, H. J., Liu, L., Jayanthi, C. S., Tang, M. and Wu, S.-Y., Nature 405, 769 (2000).
22. Chen, D., Sasaki, T., Tang, J. and Qin, L.-C., Phys. Rev. B 77, 125412 (2008).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed