Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-25T05:05:53.880Z Has data issue: false hasContentIssue false

Electrical Properties of GaN/Si Grown by MOCVD

Published online by Cambridge University Press:  11 February 2011

Seikoh Yoshida
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd 2–4–3, Okano, Nishi-ku, Yokohama, 220–0073, Japan
Jiang Li
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd 2–4–3, Okano, Nishi-ku, Yokohama, 220–0073, Japan
Takahiro Wada
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd 2–4–3, Okano, Nishi-ku, Yokohama, 220–0073, Japan
Hironari Takehara
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd 2–4–3, Okano, Nishi-ku, Yokohama, 220–0073, Japan
Get access

Abstract

GaN growth on Si substrate is very attractive for realizing low cost electronic devices. We grew a thin GaN film on p-type Si(111) substrate using AlGaN high temperature buffer without using a conventional low temperature buffer. A homogeneous buffer layer was obtained at 1093 K and a homogenous 500 nm thick GaN layer was also obtained without any crack. Using a transmission electron microscopy (TEM), we observed that the cross-section of GaN and AlGaN buffer was very smooth and also the surface of GaN was flat although the threading dislocations were observed. Furthermore, we directly fabricated a metal semiconductor field effect transistor (MESFET) using a 500 nm-thick GaN/Si without any high resistive GaN layer. A Schottky electrode was Pt/Au and an ohmic electrode was Al/Ti/Au. A Schottky breakdown voltage was over 100 V. Also, we confirmed a high temperature operation of the MESFET using a thin GaN film on Si substrate at 573 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M.A., Shur, M.S., Kuzunia, J.N., Chin, Q., Burm, J. and Schaff, W.: Appl. Phys. Lett. 66, 1083 (1995).Google Scholar
2. Akutas, O., Fan, Z. F., Mohammad, S. N., Botchkarev, A. E. and Morkoç, H.: Appl. Phys. Lett. 69, 3872 (1996).Google Scholar
3. Zhang, N.-Q., Keller, S., Parish, G., Heikman, S., Denbaars, S.P. and Mishra, U.K.: IEEE Electron Device Lett. 21, 373 (2000).Google Scholar
4. Yoshida, S. and Suzuki, J.: Jpn. J. Appl. Phys. Lett. 37, 482 (1998).Google Scholar
5. Yoshida, S. and Suzuki, J.: Jpn. J. Appl. Phys. Lett. 38, 851 (1999).Google Scholar
6. Yoshida, S. and Ishii, H.: Physica Status Solidi (a) 188, 243 (2001).Google Scholar
7. Khan, M.A., Kuznia, J.N., Olson, D.T., Schaff, W.J., Burm, J.W. and Shur, M.S.: Appl. Phys. Lett. 65, 1121 (1994).Google Scholar
8. Yoshida, S., Ishii, H., and Li, J.: Materials Science Forum 389–393, 1527 (2002).Google Scholar
9. Guha, S., Bojarczuk, N. A.: Appl. Phys. Lett. 72, 415 (1998).Google Scholar
10. Yang, J. W., Lunev, A., Simin, G., Chitnis, A., Shatalov, M., Khan, M. A., van Nostrand, J. E. and Gaska, R.: Appl. Phys. Lett. 76, 273 (2000).Google Scholar
11. Wang, D., Hiroyama, Y., Tamura, M., Ichikawa, M. and Yoshida, S.: Appl. Phys. Lett. 77, 1846 (2000).Google Scholar
12. Simin, G., Hu, X., Tarakji, A., Zhang, J., Koudymv, A., Saygi, S., Yang, J., Kahan, A., Shur, M. S., and Gaska, R., Jpn. J. Appl. Phys. 40, L1142(2001).Google Scholar
13. Vellas, N., Gaquiere, C., Guhel, Y., Werquin, M., Bue, F., Auby, R., Delage, S., Semond, F., and Dc Jaeger, J. C. IEEE Electron Device Lett. 23, 461 (2002).Google Scholar