Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T17:17:52.443Z Has data issue: false hasContentIssue false

Electrical Noise in Ultra Thin Giant Magnetoresistors

Published online by Cambridge University Press:  10 February 2011

A. Lisauskas
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, Stockholm, SWEDEN; Department of Radiophysics, Vilnius University, Vilnius, LITHUANIA.
S. I. Khartsev
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, Stockholm, SWEDEN;
A. M. Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, Stockholm, SWEDEN;
V. Palenskis
Affiliation:
Department of Radiophysics, Vilnius University, Vilnius, LITHUANIA.
Get access

Abstract

We report measurements of low frequency 1/f excess noise for the series of La0.75Sr0.25MnO3 (LSMO) giant magnetoresistive thin epitaxial films with thickness of 42, 50, 100, and 600 Å. Fabricated manganite films experience semiconductor-normal metal (paramagnetic-ferromagnetic) phase transition with the temperature change. The transition manifests itself by the sharp change of resistivity and characteristic peak of magnetoresistivity. Thickness decrease results in lowering the transition temperature and increasing of resistivity. The noise spectra has 1/fa behavior with a ≈ 1± 0.2. The voltage fluctuations spectral density shows quadratic dependence on current indicating that observed noise is caused by the resistance fluctuations. Noise level, temperature coefficient of resisistvity and magnetoresistance increase for thin films. Therefore, the operation point (transition temperature) can be tailored from 330 K to 220 K by changing only the film thickness while the performance of temperature and magnetic field LSMO sensors can be maintained almost constant in thickness range down to 100 Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. R. J. M. Van de Veerdonk, Beliën, P. J. L., Schep, K. M., Kools, J. C.S., De Nooijer, M. C., Gijs, M. A. M., Coehoom, R., and De Jonge, W. J. M., J. Appl. Phys. 82, 6152 (1997).Google Scholar
2. Alers, G. B., Ramirez, A. P., and Jin, S., Appl. Phys. Lett. 68, 3644 (1996).10.1063/1.115757Google Scholar
3. Hardner, H. T., Weissman, M. B., Jaime, M., Treece, R. E., Dorsey, P. C., Herwitz, J. S., and Chrisey, D.B., J. Appl. Phys. 81, 272 (1997).10.1063/1.363844Google Scholar
4. Khartsev, S.I., Johnsson, P. and Grishin, A.M., presented at the INTERMAG 99.Google Scholar
5. Dutta, P. and Horn, P. M., Rev. Mod. Phys. 53, 497 (1981).10.1103/RevModPhys.53.497Google Scholar
6. Rajeswari, M., Goyal, A., Raychaudhuri, A. K., Robson, M. C., Xiong, G. C., Kwon, C., Ramesh, R., Greene, R. L., Venkatesan, T., and Lakeou, S., Appl. Phys. Lett. 69, 851 (1996).10.1063/1.117913Google Scholar
7. Rajeswari, M., Shreekala, R., Goyal, A., Lofland, S. E., Bhagat, S. M, Ghosh, K., Sharma, R. P., Greene, R. L., Ramesh, R., Venkatesan, T., and Boettcher, T., Appl. Phys. Lett. 73, 2672 (1998).10.1063/1.122549Google Scholar
8. Scouten, S., Xu, Yizi, Moeckly, B. H., and Buhrman, A., Phys. Rev. B 50, 16121(1994).10.1103/PhysRevB.50.16121Google Scholar