Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T01:17:40.575Z Has data issue: false hasContentIssue false

Electrical Detection of Deoxyribonucleic Acid Hybridization With AlGaN/GaN High Electron Mobility Transistors

Published online by Cambridge University Press:  01 February 2011

ByoungSam Kang
Affiliation:
bskang@che.ufl.edu, University of Florida, Chemical Engineering, University of Florida Chemical Eng., Bldg. #723 Rm. #119, Gainesville, FL, 32611, United States, 352-846-2989, 352-392-9513
S. J. Pearton
Affiliation:
spear@mse.ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
J. J. Chen
Affiliation:
jjchen@che.ufl.edu, University of Florida, Chemical Engineering, Gainesville, FL, 32611, United States
F. Ren
Affiliation:
fren@che.ufl.edu, University of Florida, Chemical Engineering, Gainesville, FL, 32611, United States
J. W. Johnson
Affiliation:
wjohnson@nitronex.com, Nitronex Corporation, Raleigh, NC, 27606, United States
R. J. Therrien
Affiliation:
wjohnson@nitronex.com, Nitronex Corporation, Raleigh, NC, 27606, United States
P. Rajagopal
Affiliation:
wjjohnson@nitronex.com, Nitronex Corporation, Raleigh, NC, 27606, United States
J. C. Roberts
Affiliation:
wjjohnson@nitronex.com, Nitronex Corporation, Raleigh, NC, 27606, United States
E. L. Piner
Affiliation:
wjjohnson@nitronex.com, Nitronex Corporation, Raleigh, NC, 27606, United State s
K. J. Linthicum
Affiliation:
wjjohnson@nitronex.com, Nitronex Corporation, Raleigh, NC, 27606, United States
Get access

Abstract

Au-gated AlGaN/GaN High Electron Mobility Transistor (HEMT) structures were functionalized in the gate region with label free 3′-thiol modified oligonucleotides. This serves as a binding layer to the AlGaN surface for hybridization of matched target Deoxyribonucleic Acid (DNA). X-ray photoelectron spectroscopy (XPS) shows that immobilization of thiol modified DNA covalently bonded with gold on the gated region. Hybridization between probe DNA and matched or mismatched target DNA on the Au-gated HEMT was detected by electrical measurements. The HEMT drain-source current showed a clear decrease of 115 μA as this matched target DNA was introduced to the probe DNA on the surface, showing the promise of the DNA sequence detection approach for biological sensing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ticono, I.J., J. Phys. Chem., 100, 13311(1996).Google Scholar
2. Drmanac, R., Drmanac, S., Stezoska, Z., Paunesku, T., Labat, I., Zeremski, M., Snoddy, J., Funkhouser, W. K., Koop, B., Hood, L., Crkvenjakov, R., Science, 260, 1649(1993).Google Scholar
3. Peterlinz, K. A., Georgiadis, R. M., Herne, T. M., and Tarlov, M. J., J. Am. Chem. Soc. 119, 3401(1997).Google Scholar
4. Storhoff, J. J., Mirkin, C. A., Chem. Rev. 99, 1849(1999).Google Scholar
5. Kim, D.-S., Park, H.-J., Jung, H-.M., Shin, J.-K., Choi, P., Lee, J.-H. and Lim, G., Jpn. J. Appl. Phys.43, 3855(2004).Google Scholar
6. Su, H., Kallury, K. M. R., Thompson, M., Roach, A., Anal. Chem. 66, 769(1994).Google Scholar
7. Garland, P. B., Q. Rev. Biophys. 29, 91(1996).Google Scholar
8. Hashimoto, K., Ito, K., Ishimori, Y., Anal. Chem. Acta. 286, 219(1994).Google Scholar
9. Han, D. I., Kim, D. S., Park, J. E., Shin, J. K., Kong, S. H., Choi, P. C., Lee, J. H., Lim, G., Jpn. J. Appl. Phys. 44, 5496(2005)Google Scholar
10. Ohtake, T., Hamai, C., Uno, T., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 43, L1137(2004)Google Scholar
11. Sakata, T., Kamahori, M., and Miyahara, Y., Jpn. J. Appl. Phys. 44, 2854(2005)Google Scholar
12. Xuan, G., Kolodzey, J., Kapoor, V., Gonye, G., Appl. Phys. Lett. 87, 103903(2005).Google Scholar
13. Zhang, A. P., Rowland, L. B., Kaminsky, E. B., Tilak, V., Grande, J. C., Teetsov, J., Vertiatchikh, A. and Eastman, L. F., J.Electron.Mater.32 388(2003).Google Scholar
14. Pearton, S. J., Kang, B. S., Kim, S., Ren, F., Gila, B. P., Abernathy, C. R., Lin, J. and Chu, S. N. G., Phys, J.: Condensed Matter 16 R961(2004).Google Scholar
15. Steinoff, G., Purrucker, O., Tanaka, M., Stutzmann, M. and Eickoff, M., Adv. Funct. Mater. 13,841(2003).Google Scholar
16. Steinhoff, G., Baur, B., Wrobel, G., Ingebrandt, S., Offenhauser, A., Dadgar, A., Krost, A., Stutzmann, M. and Eickhoff, M., Appl. Phys. Lett. 86, 033901(2005).Google Scholar
17. Kang, B. S., Ren, F., Wang, L., Lofton, C., Tan, Weihong, Pearton, S. J., Dabiran, A., Osinsky, A., and Chow, P. P., Appl. Phys. Lett. 87, 023508(2005).Google Scholar
18. Baur, B., Steinhoff, G., Hernando, J., Purrucker, O., Tanaka, M., Nickel, B., Stutzman, M., and Eickhoff, M, Appl. Phys.Lett. 87, 263901(2005).Google Scholar
19. Bayer, M., Uhl, C., and Vogl, P.. J. Appl. Phys. 97, 033703(2005).Google Scholar
20. Garcia, M. A., Wolter, S. D., Kim, T. H., Choi, S., Losurdo, M, Bruno, G, Appl. Phys. Lett., 88 013506(2006).Google Scholar
21. Petrovykh, D. Y., Kimura-Suda, H., Whiteman, L. J., and Tarlov, M. J., J. Am. Chem. Soc., 125, 5219(2003).Google Scholar
22. Kang, B. S., Ren, F., Kang, M. C., Lofton, C., Tan, Weihong, Pearton, S. J., Dabiran, A., Osinsky, A., and Chow, P. P., Appl. Phys.Lett. 86, 173502(2005).Google Scholar
23. Peterson, A. W., Wolf, L. K. and Georgiadis, R. M., J. Am. Chem. Soc., 124, 14601(2002).Google Scholar