Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T07:40:58.782Z Has data issue: false hasContentIssue false

Electrical Characterization of Isotype n-ZnO/n-GaN Heterostructures

Published online by Cambridge University Press:  01 February 2011

Yahya Alivov
Affiliation:
yialivov@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W. Main Street, Richmond, VA, 23284, United States
Xiao Bo
Affiliation:
xiaob@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W. Main Street, Richmond, VA, 23284, United States
Sena Akarca-Biyikli
Affiliation:
nbiyikli@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W. Main Street, Richmond, VA, 23284, United States
Fan Qian
Affiliation:
fanq@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W. Main Street, Richmond, VA, 23284, United States
Daniel Johnstone
Affiliation:
djohnstone@semetrol.com, SEMETROL, Chesterfield, VA, 23838, United States
Olena Lopatiuk-Tirpak
Affiliation:
lopatiuk@physics.ucf.edu, University of Central Florida, Physics Department, Orlando, FL, 32816, United States
Leonid Chernyak
Affiliation:
chernyak@physics.ucf.edu, University of Central Florida, Physics Department, Orlando, FL, 32816, United States
Cole Litton
Affiliation:
cole.litton@sbcglobal.net, Air Force Research Laboratory-retired (AFRL/MLPS), Dayton, OH, 45433, United States
Hadis Morkoç
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W. Main Street, Richmond, VA, 23284, United States
Get access

Abstract

Electrical properties of n-ZnO/n-GaN isotype heterostructures obtained by rf-sputtering of ZnO films on GaN layers grown by metal-organic vapour phase epitaxy are discussed. Current-voltage (I-V) characteristics of the n-ZnO/n-GaN diodes revealed highly rectifying behavior with forward and reverse currents ∼1.43×10-2 A/cm2 and ∼2.4×10-4 A/cm2, respectively, at ±5 V. From the Arrhenius plot built using temperature dependent current-voltage characteristics (I-V-T) an activation energy 0.125 eV was derived for the reverse bias leakage current path, and 0.62 eV for the band offset from forward bias measurements. From electron-beam induced current measurements the minority carrier diffusion length in ZnO was estimated in the range 0.125-0.175 mm, depending on excitation conditions. The temperature dependent EBIC measurements yielded an activation energy of 0.462 ± 0.073 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H.. Journal of Applied Physics, V. 98, 041301 (2005).Google Scholar
2 Look, D.C., Claflin, B., Alivov, Ya.I., and Park, S.J., Physica Status Solidi (b) V. 201, 2203 (2004)Google Scholar
3 Alivov, Ya. I., Kalinina, E. V., Cherenkov, A. E., Look, D. C., Ataev, B. M., Omaev, A. K., Chukichev, M. V., and Bagnall, D. M., Appl. Phys. Lett. 83, 4719 (2003).Google Scholar
4 Osinsky, A., Dong, J. W., Kauser, M. Z., Hertog, B., Dabiran, A. M., Chow, P. P., Pearton, S. J., Lopatiuk, O., and Chernyak, L., Appl. Phys. Lett. 85, 4272 (2004).Google Scholar
5 Alivov, Ya. I., Van Nostrand, J.E., Look, D.C., Chukichev, M.V., and Ataev, B.M., Appl. Phys. Lett. 83, 2943 (2003).Google Scholar
6 Yu, Qing-Xuan, Xu, Bo, Wu, Qi-Hong, Liao, Yuan, Wang, Guan-Zhong, Fang, Rong-Chuan, Lee, Hsin-Ying and Lee, Ching-Ting, Appl. Phys. Lett., 83, 4713 (2003).Google Scholar
7 Rogers, D. J., Teherani, F. Hosseini, Yasan, A., Minder, K., Kung, P., and Razeghi, M., Appl. Phys. Lett. 88, 141918 (2006)Google Scholar
8 Lopatiuk, Olena, Osinsky, Andrei, Dabiran, Amir, Gartsman, Konstantin, Feldman, Isai, Chernyak, Leonid, Solid-State Electronics 49 (2005) 16621668 Google Scholar
9 L, Chernyak, A, Osinsky, A., Schulte Solid-State Electron 45, 1687 (2001)Google Scholar
10 Alivov, Ya. I., Bo, X., Akarca-Biyikli, S., Fan, Q., Xie, J., Biyikli, N., Zhu, K., Johnstone, D., and Morkoç, H., J. Electron. Materials 35, 520 (2006).Google Scholar
11 Alivov, Ya. I., Özgür, Ü., Doğan, S., Liu, C., Moon, Y., Gu, X., Avrutin, V., Fu, Y., and Morkoç, H., Solid State Electronics 49, 1693 (2005).Google Scholar
12 Alivov, I., Xiao, B, Fan, Q., and Johnstone, D., Morkoç, H., Applied Physics Letters, in press.Google Scholar
13 Hong, Soon-Ku, Hanada, Takashi, Makino, Hisao, Ko, Hang-Ju, Chen, Yefan, and Yao, Takafumi, Tanaka, Akinori, Sasaki, Hiroyuki, and Sato, Shigeru, Imai, Daisuke, Araki, Kiyaoki, and Shinohara, Makoto, J. Vac. Sci. Technol. B 19, 1429 (2001)Google Scholar
14 Johnson, M.A.L., et al, J. Electron. Mater. 25, 855 (1996).Google Scholar
15 Milnes, A. G. and Feucht, D. L., Heterojunctions and Metal-Semiconductor Junctions (Academic, New York, 1972).Google Scholar