Hostname: page-component-6d856f89d9-26vmc Total loading time: 0 Render date: 2024-07-16T08:18:55.218Z Has data issue: false hasContentIssue false

Electrical and Structural Characterization of Ti Contacts to Si0.89 Ge0.11/Si(001) Epilayers

Published online by Cambridge University Press:  15 February 2011

M. Lyakas
Affiliation:
Dpt. of Materials Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
M. Beregovsky
Affiliation:
Dpt. of Materials Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
I. Moskowitz
Affiliation:
Dpt. of Materials Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
M. Eizenberg
Affiliation:
Dpt. of Materials Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
Get access

Abstract

The properties of thin (350 Å) Ti layers deposited on Si0.89Ge0.11 layers epitaxially grown on Si(001) were studied as a function of isochronal (30 min.) thermal treatments in the temperature range Ta=550–800°C. Both as-deposited and annealed at Ta up to 750°C Schottky diodes revealed near-ideal I–V and C–V characteristics with the same flat-band barrier height eV. The results indicate that at these Ta the Fermi level is pinned with respect to the conduction band.

Annealing at 800°C resulted in an improvement of the Schottky diodes quality and a drop in and the series resistance Rs of the contacts. The values of the ideality factor n and ( measured were 1.03±0.02 and 0.56±0.007 eV, correspondingly. The electrical parameters of these metal/semiconductor contacts were correlated with the dynamics of interfacial reactions due to the applied heat-treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kasper, E., J., J.of Crystal Growth, 150: Part 2, 921, (1995).Google Scholar
2. Maex, K., Mat. Sci. and Eng. R11, 53, (1993).Google Scholar
3. Liauh, H.R., Chen, M.C., Chen, J.F., and Chen, L.J., J. Appl. Phys., 74, 2590, (1993).Google Scholar
4. Qi, W-J., Li, B-Z., Huang, W-N., Gu, Z-G., Lu, H-Q., Zhang, X-J., Zhang, M., Dong, G-S., Miller, D.C., and Aitken, R.G., J. Appl. Phys., 77, 1086, (1995).Google Scholar
5. Thomas, O., d'Heurle, F.M., and Delage, S., J. Mat. Res., 5, 1453, (1990).Google Scholar
6. Liou, H. K., Wu, X., Gennser, U., Kesan, V.P., Iyer, S.S., Tu, K.N., and Yang, E.S., Appl. Phys. Lett., 60, 577, (1992).Google Scholar
7. Colgan, E.G., Clevenger, L.A., and Cabral, C., Appl. Phys. Lett., 65, 2009, (1994).Google Scholar
8. Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., and Ozturk, M.C., J. Appl. Phys., 77, 5107, (1995).Google Scholar
9. Buxbaum, A., Eizenberg, M., Raizman, A. and Schaffler, F., Appl. Phys. Lett. 59, 665 (1991).Google Scholar
10. Aubri, V., Meyer, F., Warren, P., and Dutartre, D., Appl. Phys. Lett., 63, 2520, (1993).Google Scholar
11. Werner, J.H., Appl. Phys., A47, 291, (1988).Google Scholar
12. People, R., Phys. Rev., B32, 1405, (1985).Google Scholar
13. Lang, D.V., People, R., Bean, J.C., and Sergent, A.M., Appl. Phys. Lett., 47, 1333, (1985).Google Scholar
14. Ni, W.X., Knall, J., and Hansson, G.V., Surf. Sci. 189/190, 379, (1987).Google Scholar
15. Werner, J. and Guttler, H., J. Appl. Phys., 73, 1315, (1993).Google Scholar
16. Aboelfotoh, M.O. and Tu, K.N., Phys. Rev., B34, 2311, (1986).Google Scholar