Skip to main content Accessibility help
×
Home

Electrical and Physical Characterization of Ultrathin Silicon Oxynitride Gate Dielectric Films Formed by the Jet Vapor Deposition Technique

  • A. Karamcheti (a1), V.H.C. Watt (a1), T.Y. Luo (a1), D. Brady (a1), F. Shaapur (a1), L. Vishnubhotla (a1), G. Gale (a1), H.R. Huff (a1), M.D. Jackson (a1), K. Torres (a1), A. Diebold (a1), J. Guan (a1), M.C. Gilmer (a1), G.A. Brown (a1), G. Bersuker (a1), P. Zeitzoff (a1), T. Tamagawa (a2), X. Guo (a3), X.W. Wang (a3) and T.P. Ma (a3)...

Abstract

This paper describes the electrical and physical characteristics of ultrathin Jet Vapor Deposited (JVD) Silicon Oxynitride films. Capacitance-Voltage measurements indicate an equivalent oxide thickness (EOT) of less than 2 nm, taking into account the quantum-mechanical correction. These films have leakage currents almost two orders of magnitude lower than thermal oxide of the same equivalent thickness. Measurements on NMOSFETs with 0.15 μm of channel length demonstrate excellent electrical properties, including high drive currents (∼0.5 mA/μm @ Vd=Vg–Vt=l.5 V), low sub-threshold swings (∼72 mV/decade), and high transconductance (∼0.36 mS/μm @ Vd=1.5 V). These films were also analyzed using a variety of physicochemical methods, including Total X-ray Fluorescence (TXRF), Atomic Force Microscopy (AFM), Nuclear Reaction Analysis (NRA), Low Energy (500 eV) Secondary Ion Mass Spectrometry (SIMS), and Transmission Electron Microscopy (TEM). Surface metal concentrations of less than 1011 atoms/cm2 were measured from the TXRF analysis. The microroughness values for these films varied between 0.15 – 0.17 nm as measured by AFM. Low energy (500 eV) SIMS and NRA indicate high [N] near the top as well as throughout the bulk of the film, and a significant amount of [O] near the top of the film. High Resolution TEM pictures show a very uniform film with a physical thickness of 2.8 ± 0.1 nM, which yields an effective dielectric constant of 5.5, consistent with these types of oxynitride films.

Copyright

References

Hide All
1. Schuegraf, K.F., Park, D. and Hu, C., IEDM Tech. Dig., 609 (1994).
2. Taur, Y. and Nowak, E.J., IEDM Tech. Dig., 215 (1997).
3. Lo, S.-H., Buchanan, D.A., Taur, Y. and Wang, W., IEEE Electron Device Lett. 18, 209 (1997).
4. The National Technology Roadmap for Semiconductors, (SIA, Santa Clara, CA, 1997), p.71.
5. Parker, C., Lucovsky, G. and Hauser, J., IEEE Electron Device Lett. 19, 106 (1998).
6. Lucovsky, G., Niimi, H., Wu, Y., Parker, C.R. and Hauser, J.R., J. Vac. Sci. Technol. A16, 1721 (1998).
7. Song, S.C., Luan, H.F., Chen, Y.Y., Gardner, M., Fulford, J., Allen, M. and Kwong, D.L., IEDM Tech. Dig., 373 (1998).
8. Song, S.C., Lee, C.H., Luan, H.F., Kwong, D.L., Gardner, M., Fulford, J., Allen, M., Bloom, J. and Evans, R. in Ultrathin Si02 and High-K Materials for ULSI Gate Dielectrics, edited by Huff, H.R., Richter, C.A., Green, M.L., Lucovsky, G., and Hattori, T. (Mat. Res. Soc. Symp. Proc. 567, Warrendale, PA, 1999) pp. 6570.
9. Hattangady, S.V., Grider, D.T., Kraft, R., Shiau, W-T., Douglas, M., Nicollian, P., Rodder, M., Brown, G.A., Chatterjee, A., Hu, J., Aur, S., Tsai, H.-L., Chapman, R.A., Eklund, R.H., Chen, I-C. and Pas, M.F. in Microelectronic Device Technology I1, SPIE Proceedings Series V. 3506, Bellingham, WA, 1998, p. 30.
10. Wang, X.W., Shi, Y., Ma, T.P., Cui, G.J., Tamagawa, T., Golz, J., Halpern, B. and Schmitt, J., 1995 Symp. VLSI Technol. Dig. Tech. Papers, 109 (1995).
11. Ma, T. P., IEEE Trans. Electron Dev. 45, 680 (1998).
12. Guo, X. and Ma, T.P., IEEE Electron Device Lett. 19, 207 (1998).
13. Lo, S.-H., Buchanan, D.A. and Taur, Y., IBM J. Res. Develop. 43, 327 (1999).
14. Stathis, J.H. and DiMaria, D.J., IEDM Tech. Dig., 167 (1998).
15. Wolf, S., Silicon Processing for the VLSI Era, Volume 3 – The Submicron MOSFET, 1st ed. (Lattice Press, Sunset Beach, CA, 1995), pp. 196201.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed