Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T19:55:31.468Z Has data issue: false hasContentIssue false

Electrical and Photoelectrochemical Characterization of CDS Particulate Films by Scanning Electrochemical Microscopy, Scanning Tunneling Microscopy, and Scanning Tunneling Spectroscopy

Published online by Cambridge University Press:  21 February 2011

Xiao Kang Zhao
Affiliation:
J&D Scientific, Inc., 1815 West 1st Avenue, Mesa, Arizona 85202
Larry McCormick
Affiliation:
J&D Scientific, Inc., 1815 West 1st Avenue, Mesa, Arizona 85202
Janos H. Fendler
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, New York 13244–4100
Get access

Abstract

Cadmium sulfide particulate films have been generated at monolayer interfaces. Controlled and slow infusion of hydrogen sulfide onto compressed monolayers prepared from cadmium arachidate resulted in the formation of covalent metal sulfide bonds at a large number of sites at the monolayer-aqueous interface. The initial nucleation resulted in the downward growth of well-separated, metal-sulfide microclusters which grew in height and width and coalesced into interconnected arrays of semiconductor particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, X. K. and Fendler, J. H., J. Phys. Chem. 25, 3716 (1991).Google Scholar
2. Grätzel, M., Ace. Chem. Res. 14, 376 (1981).CrossRefGoogle Scholar
3. Bard, A. J. and Wrighton, M. S., J. Electrochem. Soc. 124, 1706 (1977).CrossRefGoogle Scholar
4. Rajeshwar, K., Kaneko, M., Yamada, A., and Novfi, R. N., J. Phys. Chem. 89, 806 (1985).Google Scholar
5. Natan, M. J., Thakeray, J. M., and Wrighton, M. S., J. Phys. Chem. 90, 4089 (1986).CrossRefGoogle Scholar
6. Santangelo, P. G., Miskelly, G. M., and Lewis, N. S., J. Phys. Chem. 92, 6359 (1988).Google Scholar
7. Meissner, D., Memming, R., and Kastening, B., J. Phys. Chem. 92, 3476 (1988).Google Scholar
8. Meissner, D., Memming, R., Li, S., Jesodharam, S., and Grätzel, M., Ber. Bunsenges. Phys. Chem. 89, 301 (1985).Google Scholar
9. Ellis, A. B., Kaiser, S. W., Bolts, J. M., and Wrighton, M. S., J. Am. Chem. Soc. 99, 2839 (1977).Google Scholar
10. Dimitrijevic, N. M., Savie, D., Micie, O., and Nozik, A. J., J. Phys. Chem. 88, 4278 (1984).CrossRefGoogle Scholar
11. Finlayson, M. F., Wheeler, B. L., Kakuta, N., Park, K. H., Bard, A. J., Campion, A., Fox, M. A., Webber, S. E., and White, J. M., J. Phys. Chem. 89, 5676 (1985).Google Scholar
12. Chmiel, G. and Gerischer, H., J. Phys. Chem. 94, 1612 (1990).CrossRefGoogle Scholar
13. Pentovelis, G., Petit, J. P., and Chartier, P., in Solar Energy Conversion and Storage (Proceedings of the Sixth International Conference), D23 (1986).Google Scholar
14. Kuk, Y. and Silverman, P. J., Rev. Sci. Instrum. 60, 165 (1989).Google Scholar
15. Feenstra, R. M., Stroscio, J. A., and Fein, A. P., Surface Sci. 181, 295 (1987).Google Scholar
16. Fan, F.-R. F. and Bard, A. J., J. Phys. Chem. 94, 3761 (1990).Google Scholar
17. Avouris, P., J. Phys. Chem. 94, 2246 (1989).Google Scholar
18. Itaya, K. and Tornita, E., Surface Sci. 212, 2515 (1989).Google Scholar
19. Chen, C. J., J. Vac. Sci. Technol. 6A, 319 (1988).Google Scholar
20. Lang, N. D., Phys. Rev. Lett. 56, 1164 (1986).Google Scholar
21. Sakami, K., Itoh, A., Fujushima, A., and Gohshi, Y., J. Vac. Sci. Technol. A8, 614 (1990).Google Scholar
22. Sze, S. M., Physics of Semiconductor Devices (John Wiley, New York, 1981).Google Scholar