Skip to main content Accessibility help
×
Home

Electrical and Optical Characteristics of Isoelectronic Al-doped GaN Films Grown by Metal Organic Chemical Vapor Deposition

  • Jae-Hoon Lee (a1), Jong-Hyun Kim (a1), Hyun-Min Ko (a1), Sung-Bum Bae (a2), Kyu-Suk Lee (a2), Yong-Hoon Cho (a3), Sung-Ho Hahm (a1), Yong-Hyun Lee (a1) and Jung-Hee Lee (a1)...

Abstract

The effects of the isoelectronic Al-doping of GaN grown by metal organic chemical vapor deposition were investigated for the first time using scanning electron microscopy (SEM), Hall measurements, photoluminescence (PL), and time-resolved PL. When a certain amount of Al was incorporated into the GaN films, the room temperature photoluminescence intensity of the films was approximately two orders larger than that of the undoped GaN. More importantly, the electron mobility significantly increased from 130 for the undoped sample to 500 cm2/Vs for the sample grown at a TMAl flow rate of 10 νmol/min, while the unintentional background concentration only increased slightly relative to the TMAl flow. The incorporation of Al as an isoelectronic dopant into GaN was easy during MOCVD growth and significantly improved the optical and electrical properties of the film. This was believed to result from a reduction in the dislocation-related non-radiative recombination centers or certain other defects due to the isoelectronic Al-doping.

Copyright

References

Hide All
1. Nakamura, S., Senoh, M., Iwasa, N., and Nagahamn, S., Jpn, J. Appl. Phys., 34, 797 (1995)
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N..,Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys., 36, 1059 (1997)
3. Yoshida, S. and Suzuki, J., J. Appl. Phys., 84, 2940 (1998)
4. Khan, M. Asif, Chen, Q., Shur, Michael S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W. J. and Eastman., L. F., Solid-State Electronics, 41, 1555 (1997)
5. Shur, M. S. and Khan., M. A., Materials Science and Engineering B, 46, 69 (1997)
6. Nakamura, S., Jpn. J. Appl. Phys., 30, 1705 (1991)
7. Nakamura, S., Kitamura, K., and Sawaki, N., Jpn. J. Appl. Phys., 24, 1184 (1995)
8. Thomas, D. G., Hopfield, J. J., and Frosch, C. J., Phys. Rev. Lett. 15, 857(1965).
9. Walukiewicz, W., Appl. Phys. Lett. 54, 2009 (1989)
10. Bhattacharya, P. K., Dhar, S., Berger, P., Juang, F. Y., Appl. Phys. Lett. 49, 470 (1986)
11. Shu, C. K., Ou, J., Lin, H. C., Chen, W. K., and Lee, M. C.., Appl. Phys. Lett. 73, 641 (1998)
12. Huang, H. Y., Lin, W. C., Lee, W. H., Shu, C. K., Liao, K. C., Chen, W. K., Lee, M. C., and Chen, W. H., Appl. Phys. Lett. 77, 2819 (2000)
13. Chung, H. M., Chuang, W. C., Pan, Y. C., Tsai, C. C., Lee, M. C., Chen, W. H., and Chen, W. K., Appl. Phys. Lett. 76, 897 (2000)
14. Shu, C. K., Lee, W. H., Pan, Y. C., Chen, C. C., Lin, H. C., Ou, J., Chen, W. H., Chen, W. K., Lee, M. C., solid state communications, 114, 291 (2000)
15. Beneking, H., Narozny, P., Emeis, N., Appl. Phys. Lett. 47, 828 (1985)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed