Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:20:03.954Z Has data issue: false hasContentIssue false

Elastic Constants of A Laves Phase Compound: C15 NbCr2

Published online by Cambridge University Press:  15 February 2011

Alim Ormeci
Affiliation:
Koc University, Istinye 80860, Istanbul, Turkey Los Alamos National Laboratory, Los Alamos, New Mexico 87545
F. Chu
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
John M. Wills
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. P. Chen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. C. Albers
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. J. Thoma
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. E. Mitchell
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The single-crystal elastic constants of C15 NbCr2 have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropie elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson's ratio and the direction dependence of Young's modulus.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pope, D.P. and Liu, C.T., in Superalloys, Supercomposites and Superceramics, edited by Tien, J.K. and Caulfield, T. (Academic Press, New York, 1989).Google Scholar
2. Fleischer, R., J. Mater. Sci. 22, 2281 (1987).Google Scholar
3. Takeyamaand, M. Liu, C.T., Mater. Sei. Eng., A132, 61 (1991).Google Scholar
4. Thoma, D.J. and Perepezko, J.H., Mater. Sci. and Eng. A156, 97 (1992).Google Scholar
5. Rowe, R.G., Skelly, D.W., Larsen, M., Heathcote, J., Odette, G.R., and Lucas, G.E., Scripta Met. et Mater. 31, 1487 (1994).Google Scholar
6. Yoshida, M., Takasugi, T., and Hanada, S., in High Temperature Intermetallic Alloys VI, edited by Horton, J., Baker, I., Hanada, S and Noebe, R.D. (Mater. Res. Soc. Proc. Vol. 364, Pittsburgh, PA, 1995), p. 1395.Google Scholar
7. Chu, F., He, Y., Thoma, D.J. and Mitchell, T.E., Scripta Met. et Mater. 33, 1295 (1995).Google Scholar
8. Chu, F., Sob, M., Siegl, R., Mitchell, T. E., Pope, D. P., Chen, S. P., Phil. Mag. B 70, 881 (1994).Google Scholar
9. Chu, F., Thoma, D. J., He, Y., Mitchell, T. E., Chen, S. P., Perepezko, J., in High Temperature Structural Intermetallic Alloys - VI, edited by Horton, J., Baker, I., Hanada, S and Noebe, R.D. (Mater. Res. Soc. Proc. Vol. 364, Pittsburgh, PA, 1995), p. 1089;Google Scholar
Chu, F., Mitchell, T. E., Chen, S. P., Sob, M., Siegl, R., and Pope, D. P., in High Temperature Structural Intermetallic Alloys - VI, edited by Horton, J., Baker, I., Hanada, S and Noebe, R.D. (Mater. Res. Soc. Proc. Vol. 364, Pittsburgh, PA, 1995), p. 1389.Google Scholar
10. Chu, F., Ormeci, A. H., Mitchell, T. E., Wills, J. M., Thoma, D. J., Albers, R. C., and Chen, S. P., Phil. Mag. Lett. 72, 147 (1995).Google Scholar
11. Ormeci, Alim, Chu, F., Wills, J.M., Mitchell, T.E., Albers, R.C., Thoma, D.J. and Chen, S.P. (to be published in Phys. Rev. B).Google Scholar
12. Wallace, D.C., Thermodynamics of Crystals, (Wiley, New York, 1972).Google Scholar
13. Murnaghan, F.D., Proc. Nat. Acad. Sci. USA 30, 244 (1944);Google Scholar
Birch, F., J. Geophys. Res. 57, 227 (1952).Google Scholar
14. Wills, J. M., unpublished;Google Scholar
Wills, J. M. and Cooper, B. R., Phys. Rev. B 36, 3809 (1987);Google Scholar
Price, D. L. and Cooper, B. R., Phys. Rev. B 39, 4945 (1989).Google Scholar
15. Hedm, L. and Lundqvist, B.I., J. of Phys. C 4, 2064 (1971).Google Scholar
16. Moruzzi, V. L., Janak, J. F., Williams, A. R., Calculated Electronic Properties of Metals (Pergamon Press, New York, 1978).Google Scholar
17. Froyen, S., Phys. Rev. B 39, 3168 (1989).Google Scholar
18. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties, Second Edition, (MIT Press, Cambridge, 1971).Google Scholar
19. Hosford, William F., The Mechanics of Crystals and Textured Polycrystals, (Oxford University Press, New York, 1993).Google Scholar
20. Wills, J.M., Eriksson, O., Söderlind, P. and Boring, A.M., Phys. Rev. Lett. 68, 2802 (1992).Google Scholar
21. Alouani, M., Albers, R.C. and Methfessel, M., Phys. Rev. B 43, 6500 (1991).Google Scholar
22. Chu, F., Lei, M., Maloy, S.A., Petrovic, J.J. and Mitchell, T.E., Acta Met. et Mater, (m press).Google Scholar
23. Trygg, J., Wills, J.M., Brooks, M.S.S., Johansson, B. and Eriksson, O., Phys. Rev. B 52, 2496 (1995).Google Scholar
24. Balankin, A.S., Bychkov, Yu F. and Yakovlev, Ye I., Phys. Met. Metall. 56, 119 (1983).Google Scholar
25. Chu, F., Lei, Ming, Migliori, A., Chen, S.P. and Mitchell, T.E., Phil. Mag. B 70, 867 (1994).Google Scholar
26. Nye, J.F., Physical Properties of Crystals, (Oxford Science Publications, Oxford, 1993), p. 131149.Google Scholar