Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-25T07:31:16.407Z Has data issue: false hasContentIssue false

Elastic and Plastic Properties of Gamma + Laves Phase In-situ Composite Alloys Using Nanoindentation Techniques

Published online by Cambridge University Press:  10 February 2011

M. L Weaver
Affiliation:
Department of Metallurgical and Materials Engineering, The University of Alabama, Box 870202, Tuscaloosa, AL 35487-0202
M. E Stevenson
Affiliation:
Department of Metallurgical and Materials Engineering, The University of Alabama, Box 870202, Tuscaloosa, AL 35487-0202
M. Shamsuzzoha
Affiliation:
Department of Metallurgical and Materials Engineering, The University of Alabama, Box 870202, Tuscaloosa, AL 35487-0202
R. D. Ott
Affiliation:
Center for Materials for Information Technology, The University of Alabama, Box 870209,Tuscaloosa, AL 35487-0209
M. P Brady
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Mail Stop 6115, Oak Ridge, TN 37831-6115
Get access

Abstract

In the present study, the local elastic and plastic properties of the γ- TiAl and the Laves phases have been investigated in a series of γ + Laves alloys using room-temperature compression, Vickers microhardness, and nanoindentation with an emphasis on elucidating the local property changes in γ + Laves alloys deformed at room temperature. This study shows that nanoindentation can be used to provide useful information on plastic flow in multiphase intermetallic alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y. W. and Froes, F. H., High Temperature Aluminides and Intermetallics, ed. Whang, S. H., Liu, C. T., Pope, D. P. and Stiegler, J. O. (Warrendale, PA: The Minerals, Metals and Materials Society, 1989), 465492.Google Scholar
2. Yamaguchi, M., Titanium ‘92, ed. Froes, F. H. and Caplan, I. (Warrendale, PA: The Minerals, Metals and Materials Society, 1993), 959970.Google Scholar
3. Brady, M. P., Brindley, W. J., Smialek, J. L. and Locci, I. E., JOM, 8 (1996), 4650.CrossRefGoogle Scholar
4. McCarron, R. L., Schaeffer, J. C., Meier, G. H., Berztiss, D., Perkins, R. A. and Cullinan, J., Titanium ‘92, ed. Froes, F. H. and Caplan, I. (Warrendale, PA: The Minerals, Metals and Materials Society, 1993), 19711978.Google Scholar
5. Brady, M. P., Smialek, J. L. and Terepka, F., Scripta Metallurgica et Materialia, 32 (1995), 16591664.CrossRefGoogle Scholar
6. Perkins, R. A. and Meier, G. H., Proceedings of the Industry-University Advanced Materials Conference II, ed. F. Smith (Golden, CO: Advanced Materials Institute, 1989), 92.Google Scholar
7. Tang, Z. L., Wang, F. H. and Wu, W. T., Oxidation of Metals, 48 (1997), 511525.CrossRefGoogle Scholar
8. Leyens, C., M., S., Peters, M. and Kaysser, W. A., Materials Science and Engineering A, A239–240 (1997), 680687.CrossRefGoogle Scholar
9. Brady, M. P., Smialek, J. L. and Brindley, W. J., US Patent 5,837,387 (November 17, 1998).Google Scholar
10. Krushchov, M. M. and Berkovich, E. S., Industrial Diamond Review, 11 (1951), 4249.Google Scholar
11. Oliver, W. C. and Pharr, G. M., Journal of Materials Research, 7 (1992), 15641583.CrossRefGoogle Scholar
12. Pethica, J. B. and Oliver, W. C., Thin Films: Stress and Mechanical Properties, ed. Bravman, J. C., Nix, W. D., Barnett, D. M. and Smith, D. A. (Pittsburgh, PA: Materials Research Society, 1989), 8792.Google Scholar