Skip to main content Accessibility help

Efficient Stacked OLED processed by Organic Vapor Phase Deposition (OVPD)

  • M. Brast (a1), S. Axmann (a1), M. Slawinski (a1), M. Weingarten (a1), F. Lindla (a2), M. Bösing (a2), M. Heuken (a1) (a3), A. Vescan (a1) and H. Kalisch (a1)...


The development of efficient large-area organic light emitting diodes (OLED) requires reliable and easily processable charge generation layers (CGL) with low excess voltage drop and high optical transparency. OVPD offers the advantage of a precise control of layer morphology, composition and thickness and is a powerful method for the deposition of advanced OLED designs. In this work, electrical doping of organic semiconductors using OVPD is investigated and applied to stacked OLED utilizing inorganic/organic CGL. The organic p-type dopant NDP-9 of Novaled GmbH is used for doping the hole transport material N,N‘-diphenyl-N,N‘-bis(1-naphthylphenyl)-1,1‘-biphenyl-4,4‘-diamine (α-NPD) in an AIXTRON OVPD tool. A doping concentration of 8 vol.% of NDP-9 in α-NPD is found optimal for hole injection as well as conductivity. This dopant concentration was employed in CGL with the structure: electron transport material/LiF/Al/α-NPD:8 vol.% NDP-9. External quantum efficiencies (EQE) of 15%, 35% and 50% and luminous efficiencies of 37 lm/W, 45 lm/W and 45 lm/W at 1000 cd/m2 are demonstrated for single, double- and triple-unit green phosphorescent OLED, respectively.



Hide All
1. Forrest, S. R., Burrows, P. E., Shen, Z., Gu, G., Bulovic, V., Thompson, M.E., Synth. Met. 91, 913 (1997).
2. Kanno, H., Giebink, N. C., Sun, Y., Forrest, S. R., Appl. Phys. Lett. 89, 023503 (2006).
3. Hiroshi, K., Yuji, H., Kazuki, N., Okumoto, K., Saito, N., Kanno, H., et al. , Jpn. J. Appl. Phys. 45, 92199223 (2006).
4. Liao, L. S., Klubek, K. P., Tang, C. W., Appl. Phys. Lett. 84, 167 (2004).
5. Chang, C.-C., Chen, J.-F., Hwang, S.-W., Chen, C. H., Appl. Phys. Lett. 87, 253501 (2005).
6. Guo, F., Ma, D., Appl. Phys. Lett. 87, 173510 (2005).
7. Zhang, H. M., Choy, W. C. H., Org. Electron. 9, 964967 (2008).
8. Meyer, J., Kröger, M., Hamwi, S., Gnam, F., Riedl, T., Kowalsky, W., et al. , Appl. Phys. Lett. 96, 193302 (2010).
9. Kanno, H., Holmes, R. J., Sun, Y., Kena-Cohen, S., Forrest, S. R., Adv. Mater. 18, 339342 (2006).
10. Liao, L. S., Klubek, K. P., Appl. Phys. Lett. 92, 223311 (2008).
11. Gao, W., Kahn, A., J. Appl. Phys. 94, 359 (2003).
12. Lee, S., Lee, J.-H., Lee, J.-H., Kim, J.-J., Adv. Funct. Mater. 22, 855860 (2012).
13. Chiba, T., Pu, Y.-J., Miyazaki, R., Nakayama, K., Sasabe, H., Kido, J., Org. Electron. 12, 710715 (2011).
14. Brast, M., Lindla, F., Boesing, M., Bertram, D., Keiper, D., Heuken, M., et al. , MRS Proc. 1402, 16 (2012).
15. Lindla, F., Boesing, M., Zimmermann, C., Jessen, F., van Gemmern, P., Bertram, D., et al. , MRS Proc. 1154, 1116 (2011).
16. Merck, KGaA, Darmstadt, Germany, Material Datasheet (2011).
17. Ding, X. M., Hung, L. M., Cheng, L. F., Deng, Z. B., Hou, X. Y., Lee, C. S., et al. , Appl. Phys. Lett. 76, 2704 (2000).
18. Yu, G., Zhang, C., Heeger, a. J., Appl. Phys. Lett. 64, 1540 (1994).
19. Hung, L. S., Zhang, R. Q., He, P., Mason, G., J. Phys. D. Appl. Phys. 35, 103107 (2002).
20. Heil, H., Steiger, J., Karg, S., Gastel, M., Ortner, H., von Seggern, H., et al. , J. Appl. Phys. 89, 420424 (2001).
21. Mason, M. G., Tang, C. W., Hung, L.-S., Raychaudhuri, P., Madathil, J., J. Appl. Phys. 89, 2756 (2001).
22. Diez, C., Reusch, T. C. G., Lang, E., Dobbertin, T., Brütting, W., J. Appl. Phys. 111, 103107 (2012).
23. Ante, F., Kälblein, D., Zschieschang, U., Canzler, T.W., Werner, A., Takimiya, K., et al. , Small. 7, 1186–91 (2011).
24. Kröger, M., Hamwi, S., Meyer, J., Dobbertin, T., Riedl, T., Kowalsky, W., et al. , Phys. Rev. B. 75, 235321 (2007).
25. Brütting, W., Berleb, S., Mückel, A.G., Synth. Met. 122, 99104 (2001).
26. Lee, J.-H., Kim, J.-J., Phys. Status Solidi. 209, 13991413 (2012).
27. Matsushima, T., Jin, G.-H., Kanai, Y., Yokota, T., Kitada, S., Kishi, T., et al. , Org. Electron. 12, 520528 (2011).
28. Olthof, S., Mehraeen, S., Mohapatra, S. K., Barlow, S., Coropceanu, V., Brédas, J.-L., et al. , Ultralow Phys. Rev. Lett. 109, 176601 (2012).
29. Lee, J.-H., Lee, J., Kim, Y.H., Yun, C., Lüssem, B., Leo, K., Org. Electron. 15, 1621 (2014).
30. Zhou, J., Zhou, Y., Zhao, J., Wu, C., Ding, X., Hou, X., Phys. Rev. B. 75, 153201 (2007).
31. Arkhipov, V., Heremans, P., Emelianova, E., Bässler, H., Phys. Rev. B. 71, 045214 (2005).
32. Cho, Y., Choi, Y. K., Sohn, S. H., Appl. Phys. Lett. 89, 051102 (2006).
33. Sun, J. X., Zhu, X. L., Peng, H. J., Wong, M., Kwok, H. S., Appl. Phys. Lett. 87, 093504 (2005).


Efficient Stacked OLED processed by Organic Vapor Phase Deposition (OVPD)

  • M. Brast (a1), S. Axmann (a1), M. Slawinski (a1), M. Weingarten (a1), F. Lindla (a2), M. Bösing (a2), M. Heuken (a1) (a3), A. Vescan (a1) and H. Kalisch (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed