Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T10:19:39.006Z Has data issue: false hasContentIssue false

Efficient Densification of Fine-Grained Ceramics by Hybrid (RCS-Plus-HIP) Processing

Published online by Cambridge University Press:  15 February 2011

Hayne Palmour III
Affiliation:
Dept. of Mat'ls Science & Engr'g, North Carolina State University, Raleigh, NC 27695–7907
Thomas M. Hare
Affiliation:
Dept. of Mat'ls Science & Engr'g, North Carolina State University, Raleigh, NC 27695–7907
Roger L. Russell
Affiliation:
RCS Technologies, Inc., 3410 Hillsborough St., Raleigh, NC 27607
Get access

Abstract

In this paper, we consider certain technological and economic advantages associated with rate controlled sintering (RCS) as the critical first step in a two-step hybrid densification cycle: RCS-plus-HIP. With proper combinations of(a) powder processing (to obtain narrow initial particle size distribution and high green density) and (b) carefully optimized RCS sintering profile (to assure effective pore closure with minimal grain growth), one can readily produce technically dense (gas-tight) sintered ceramic components that can then be rather easily HIPed to full density with very little additional grain growth.

The experimental background and underlying concepts for RCS are briefly reviewed, and are related to the broader issue of establishing and maintaining control of microstructural evolution during densification processes, including those that are best concluded in the high pressure gas atmospheres typically employed for hot isostatic pressing (HIP). To illustrate these points, some examples of RCS-plus-HIP processed oxide ceramics – dense, optically translucent and/or transparent, yet also quite uniformly fine-grained – are shown and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuczynski, G. C., (a) Trans. AIME 185 169 (1949); (b) Z. Metallkunde 67 (9) 606 (1976).Google Scholar
2. (a) Coble, R. L., J. Appl. Phys. 32 787 (1961); (b) R. L. Coble, R. M. Cannon, pp. 151–170 in H. Palmour III, R. F. Davis, T. M. Hare, eds., Processing of Crystalline Ceramics. Mat'ls. Sci. Res., Vol 11, Plenum Press, New York - London, 1978.Google Scholar
3. Johnson, D. L., (a) J. Appl. Phys. 40 192200 (1969); (b) pp. 137–149 in H. Palmour III, R.F. Davis, T. M. Hare, eds., Processing of Crystalline Ceramics. Op. cit. Google Scholar
4. Exner, H. E., pp. 134 in Lenel, F. V., ed., Reviews on Powder Metallurgy and Physical Ceramics. 1 (1979).Google Scholar
5. McClelland, J. D., J. Am. Ceram. Soc. 44 (10) 526(1961).CrossRefGoogle Scholar
6. Gruintjes, G. S., Oudemans, G. J., pp. 289299 in Popper, P., ed., Special Ceramics 1964. Academic Press, London - New York, 1965.Google Scholar
7. Wills, R. R., Brockway, M. C., McCoy, L. G., pp. 559579=570 in Davis, R. F., Palmour, H. III, Porter, R. L., eds., Emergent Process Methods for High Technology Ceramics. Matls. Sci. Res., Vol 17, Plenum Press, New York, NY [ 1984].Google Scholar
8. Larker, H. T. (a) pp. 571582 in Davis, R. F., Palmour, H. III, Porter, R. L., eds., Emergent Process Methods for High Technology Ceramics. Op.cit; (b) Industrial Heating LI (1) 39–42 (1984).Google Scholar
9. Kim, N., McHenry, D. A., Jang, S.-J., Shrout, T. R., J. Am. Ceram. Soc. 73 (4) 923928 (1990).Google Scholar
10. Nyce, A. C., pp. 133 in Advances in Hard Metal Production. Metal Powd. Rept. Publ. Services., Ltd. (Shrewsbury, Engl.), 1983.Google Scholar
11. Yoshimura, Y., Somiya, S., J. Am. Ceram. Soc. 69 (3) 169172 (1986).CrossRefGoogle Scholar
12. Druschitz, A. P., Adv. Ceram. Mater. 3 (3) 254256 (1988).Google Scholar
13. Oberacker, R., Kühne, A, Komac, M., Thummler, F., Interceram 40 (6) 400410 (1991).Google Scholar
14. Brook, R. J., pp. 332364 in Wang, F. F., ed., Treatise on Mat'ls Science and Technology, Vol.9, Academic Press, 1976.Google Scholar
15. Yan, M. F., Mat. Sci. Eng. 48 53 (1981).Google Scholar
16. Palmour, H. III, Hare, T. M., pp. 1734 in Kuczynski, G.C., Uskokovic', D. P., Palmour, H. III, eds., Sintering '85. Plenum Press, New York -London, 1987.CrossRefGoogle Scholar
17. Hare, T. M.. Thomas, W. A., Russell, R. L., pp. 1273–1284 in Vincenzini, P., ed. Ceramics Today - Tomorrow's Ceramics. Op. cit. Google Scholar
18. (a) Batchelor, A. D., Paisley, M. J., Hare, T. M., Palmour, H. III, pp. 233–251 in Davis, R. F., Palmour, H. III, Porter, R. L., eds., Emergent Process Methods for High Technology Ceramics. Op. cit; (b) H. Palmour III, M.J. Paisley, A. D. Batchelor and T. M. Hare, ‘The Dilatometer System”, Copyright©, All Rights Reserved, The North Carolina State University Research Corporation, 1984.CrossRefGoogle Scholar
19. Hare, T. M., Batchelor, A. D., Paisley, M.J., Palmour, H. III, Supplemental Software for ‘The Dilatometer System'©: Modeling, I. and Design Programs for CADOPS [Computer Aided Design of Optimal Path(s) for Sintering]. Copyright©, All Rights Reserved, North Carolina State University Research Corporation, 1985.Google Scholar
20. Palmour, H. III, Huckabee, M. L., U.S.Patent 3,900,542, 1975.Google Scholar
21. Palmour, H. III, Huckabee, M. L., Hare, T. M., pp. 4656 in Ristic', M. M., ed., Sintering - New Developments. Elsevier Science Publ., Amsterdam, 1979.Google Scholar
22. Palmour, H. III, pp 337356 in Uskokovic', D. P., Palmour, H. III, Spriggs, R. M., eds., Science of Sintering: New Directions for Materials Processing and Microstructural Control. Plenum Press, New York - London. 1989.Google Scholar
23. Hare, T. M., Palmour, H. III, pp. 307320 in Onoda, G.Y. Jr.,, Hench, L.L., eds., Ceramic Processing Before Firing. John Wiley & Sons, NY, 1978.Google Scholar
24. Hare, T. M., pp. 7993 in Kuczynski, G. C., ed., Sintering Processes. Matls Sci. Res. Vol.13, Plenum Press, N.Y., N. Y (1980).Google Scholar
25. Leu, H. J., Hare, T. M., and Scattergood, R. O., Acta Met. 36 (8) 1977 (1988).Google Scholar
26. Fang, T. T., Palmour, H. III, (a) Ceramics International 15 (6) 329335 (1989); (b) Ceramics International., 16 (1) 1–10 (1990); (c) Ceramics International., 16 (2) 63–71 (1990).CrossRefGoogle Scholar
27. Palmour, H. III, Geho, M., Russell, R. L., Hare, T. M., ”Study of Do-effects on subsequent densification behavior in spinel and alumina ceramics”, presented at Sintering '91 Vaancouver, July 2427, 1991. [To be published in the Proceedings, Trans-Tech Publications, Ltd., Switzerland].Google Scholar
28. Kriegel, W. W., Palmour, H. III, Choi, D. M., pp. 167–186 in Popper, P., ed., Special Ceramics, 1964. Op. cit.Google Scholar
29. Dorn, J. E., J. Mech. Phys. Solids 3 85 (1954).Google Scholar
30. Weertman, J., J. Appl. Phys. 26 1213 (1955).Google Scholar
31. Palmour, H. III, Johnson, D. R., pp. 779791 in Kuczynski, G. C. et al, eds., Sintering and Related Phenomena. Gordon & Breach, NY, 1967.Google Scholar
32. Palmour, H. III, Bradley, R. A., Johnson, D. R., pp. 392407 in Gray, T.J., Fréchette, V.D., eds., Kinetics of Reaction in Ionic Systems. Matls Sci. Res., Vol.4, Plenum Press, NY, 1969.Google Scholar
33. ‘Postulates’ were developed and extended from informal comments initially prepared for use in Palmour, H. III, ”Rate controlled sintering and its application to PIM Processing”, presented at Powder Injection Molding International Symposium, Albany, NY, July 15–17, 1991.Google Scholar
34. Geho, Mikio (NCSU Visiting Scholar, 19901992), et al., Selected data, 1991 (extracted from ongoing research; to be published).Google Scholar
35. Rhodes, W. H., pp. 23112318 (Part D) in Vincenzini, P., ed., Ceramics Today - Tomorrow's Ceramics. Elsevier Science Publ., Amsterdam, 1991.Google Scholar