Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T04:15:45.275Z Has data issue: false hasContentIssue false

Effekts of Temperature and Reactant Concentration on Properties of Fine TiO2 Particles Prepared by Vapor-Phase Hydrolysis of Titanium Teiraisopropoxide

Published online by Cambridge University Press:  25 February 2011

Fikret Kirkbir
Affiliation:
The University of Tokyo, Department of Chemical Engineering, Hongo 7–3–1, Bunkyo-ku, Tokyo 113, Japan
Hiroshi Komiyama
Affiliation:
The University of Tokyo, Department of Chemical Engineering, Hongo 7–3–1, Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

Submicrometer-size TiO2 powders were continuously produced by vapor-phase hydrolysis of titanium tetraisopropoxide, TTIP, in a tubular-flow reactor. Particle size increased with increasing inlet TTIP concentration, and with decreasing inlet water concentration and temperature. At high water concentrations, primary particles form by instantaneous chemical reactions and particle growth occur by collision and coalescence of the particles. Brownian collision and coalescence theory could predict the experimental effect of inlet TTIP concentration on particle size. The experimental deviations occurred from the theory with increasing temperature were attributed to the changing particle properties with temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barringer, E. A. and Bowen, H. K., J. Am. Ceram. Soc. 65, C199 (1982).Google Scholar
2. Visca, M. and Matijevic, E., J. Colloid Interface Sci. 68, 308 (1979).Google Scholar
3. Ishizawa, H., Sakurai, O., Mizutani, N. and Kato, M., Yogyo Kyokai Shi 93, 382 (1985).Google Scholar
4. Rice, G. W., J. Am. Ceram. Soc. 70, C117 (1987).Google Scholar
5. Dundas, P. H. and Thorpe, M. L., Chem. Eng. Prog., 66 (10), 66 (1970).Google Scholar
6. Mazdisyani, K. S., Lynch, C. T. and Smith, J. S., J. Am. Ceram. Soc. 66, 372 (1965).Google Scholar
7. Gass, J. L. and Teichner, S. J., Bull. Soc. Chim. Pr. 1972, 2209;Google Scholar
Gass, J. L., Juliiet, F. and Teichner, S. J., Bull. Soc. Chim. Pr., 1973, 429.Google Scholar
8. Komiyama, H., Kanai, T. and Inoue, H., Chem. Lett. 152, 1283 (1984); Kagaku Kogaku Ronbunshu, 11, 317 (1985).Google Scholar
9. Kirkbir, F. and Komiyama, H., Can. J. Chem. Eng., 65, 759 (1987).Google Scholar
10. Kirkbir, F. and Komiyama, H., Chem. Lett. (1988) in press; J. Am. Ceram. Soc. (1988) in pressGoogle Scholar
11. Yates, U. E., PhD thesis, University of Melbourne, 1975, from ref. [20].Google Scholar
12. Carrizosa, I. and Munuera, G., J. Cataly. 49, 174 (1977).Google Scholar
13. Bradley, D. C., Mehrotra, R. C. and Gaur, D. P., Metal Alkoxides, (Academic Press, London, 1978), ps 150167.Google Scholar
14. Ingebrethsen, B. J. and Matijevic, E., J. Colloid Interface Sci. 100, 1 (1984)CrossRefGoogle Scholar
15. George, A. P., Murley, R. D. and Place, E. R., Faraday Symp. Chem. Soc. 7, 63 (1973).Google Scholar
16. Okuyama, K., Kousaka, Y., Tohge, N., Yamamoto, S., Wu, J. J., Flagan, R. C. and Seinfeld, J. H., AIChE J. 32, 2010 (1986).CrossRefGoogle Scholar
17. Ulrich, G. D., Combus. Sci. Technol. 4, 47 (1971).Google Scholar
19. Perry, R. H. and Chilton, C. C., Eds., Chemical Engineers' Handbook, (McGraw Hill Kogakusha, Tokyo, 1973), p. 323 Google Scholar
20. Barringer, E. A. and Bowen, H. K., Langmuir 1, 414 (1985).Google Scholar
21. Burke, S. P. and Schumann, T. E. W., Ind. Eng. Chem. 20, 998 (1928).Google Scholar
22. Rankin, G. W. and Sridhar, K., J. Fluids Eng. 100, 55 (1978).Google Scholar