Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T23:14:32.310Z Has data issue: false hasContentIssue false

Effects of Si Incorporation and Electrical Activation on Intersubband Optical Absorption in MBE-grown GaAs/AlGaAs Multiple Quantum Well Structures

Published online by Cambridge University Press:  25 February 2011

J.D. Ralston
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
H. Ennen
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
M. Maier
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
M. Ramsteiner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
B. Dischler
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
P. Koidl
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
P. Hiesinger
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstrasse 4, 7800 Freiburg, West Germany.
Get access

Abstract

Using SIMS profiling, temperature-dependent Hall measurements, electronic Raman scattering, and infra-red absorption, a detailed study is presented examining the effects of Si dopant behaviour on intersubband absorption in GaAs/Al .32Ga .68As MQW’s. The samples were grown by molecular beam epitaxy at substrate temperatures ranging from 520 to 680°C with Si doping in the GaAs quantum wells only. SIMS profiling reveals that, with increasing substrate temperature, substantial Si migration into the Al .32Ga.68 As barrier layers occurs during epitaxial growth. Hall measurements indicate that both at elevated growth temperatures and under reduced incident As4 beam fluxes, the electron sheet concentration is reduced in the QW’s. In both cases, loss of free carriers is attributed to enhanced Si compensation. Shifts in the absolute frequency of the infra-red absorption resonance, determined by electronic Raman scattering, as well as variations in the integrated absorption intensity, are both shown to directly reflect the growth-induced variations in the free-carrier concentration in the quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 West, L.C. and Eglash, S.J., Appl. Phys. Lett. 46,1156 (1985).Google Scholar
2 Choi, K.K., Levine, B.F., Bethea, C.G., Walker, J., and Malik, R.J., Appl. Phys. Lett. 50, 1814 (1987).Google Scholar
3 Kane, M.J., Emeny, M.T., Apsley, N., Whitehouse, C.R., and Lee, D., Semicond. Sci. Technol. 3, 722 (1988).Google Scholar
4 Rockett, A., Klem, J., Barnett, S.A., Greene, J.E., and Morkoc, H., J. Appl. Phys. 59, 2777 (1986).Google Scholar
5 Gonzalez, L., Clegg, J.B., Hilton, D., Gowers, J.P., Foxon, C.T., and Joyce, B.A., Appl. Phys. A 41, 237 (1986).Google Scholar
6 Lanzillotto, A-M., Santos, M., and Shayegan, M., Appl. Phys. Lett. 55,1445 (1989).Google Scholar
7 Harris, J.J., Beall, R.B., Clegg, J.B., Foxon, C.T., Battersby, S.J., Lacklison, D.E., Duggan, G., and Hellon, C.M., J. Cryst. Growth 95,257 (1989).Google Scholar
8 Saxena, A.K. and Singh, B.B., Phys. Rev. B 28,1132 (1983).Google Scholar
9 Heiblum, M., Wang, W.I., Osterling, L.E., and Deline, V., J. Appl. Phys. 54, 6751 (1983).Google Scholar
10 Chand, N., Henderson, T., Klem, J., Masselink, W.T., Fischer, R., Chang, Y-C., and Morkoc, H., Phys. Rev. B 30, 4481 (1984).Google Scholar
11 Künzel, H., Ploog, K., Wünstel, K., and Zhou, B.L., J. Electr. Mat. 13, 281 (1984).Google Scholar
12 Chai, Y.G., Chow, R., and Wood, C.E.C., Appl. Phys. Lett. 39, 800 (1981).Google Scholar
13 Allen, S.J. Jr., Tsui, D.C., and Vinter, B., Sol. State. Comm. 20, 425 (1976).Google Scholar
14 Ramsteiner, M., Ralston, J.D., Koidl, P., Dischler, B., Biebl, H., Wagner, J., and Ennen, H., submitted for publication.Google Scholar
15 Emel’yanenko, O.V., Lagunova, T.S., Nasledov, D.N., and Talalakin, G.N., Sov. Phys. Sol. State 7, 1063 (1965).Google Scholar
16 Wolfe, C.M. and Stillman, G.E., Appl. Phys. Lett. 27, 564 (1975).Google Scholar
17 Murray, R., Newman, R.C., Sangster, J.L., Beall, R.B., Harris, J.J., Wright, P.J., Wagner, J., and Ramsteiner, M., J. Appl. Phys. 66, 2589 (1989).Google Scholar
18 Pinczuk, A. and Abstreiter, G., in Light Scattering in Solids V, ed. by Cardona, M. and Guntherodt, G. (Springer, Berlin, 1989), Ch. 4 and references therein.Google Scholar