Skip to main content Accessibility help

Effects of Nanocrystalline Structure and Passivation on the Photoluminescent Properties of Porous Silicon Carbide

  • Jonathan E. Spanier (a1), G. S. Cargill (a1), Irving P. Herman (a1), Sangsig Kim (a1), David R. Goldstein (a2), Anthony D. Kurtz (a2) and Ben Z. Weiss (a3)...


We present the results of an investigation of the dependence of the photoluminescence (PL) spectra on preparation conditions, the resulting microstructure, and post-anodization treatment of porous silicon carbide films which were formed from both p and n-type 6H-SiC substrates. Porous samples were prepared by anodic dissolution under different galvanostatic conditions, resulting in different porosities and crystallite sizes. Selected-area electron diffraction patterns taken on similarly prepared porous silicon carbide (PSC) samples confirmed that the films were monocrystalline. Transmission electron microscopy of as-anodized films revealed an isotropie porous network; a dependence of porosity and nanocrystallite size on porous layer formation current density was established. Some PSC samples were passivated using a short, thermal oxidation treatment. The effects of porosity and crystallite size, and of oxide passivation in these PSC films, on PL spectra and intensity were studied using a 365 nm Kr-ion laser as excitation. Under certain conditions, the spectrally integrated PL intensity of a passivated film is more than 450x that for the original bulk SiC substrate. PL spectra are presented, and possible mechanisms are discussed.


Corresponding author

2 current address: University of Illinois, Department of Electrical Engineering, Microelectronics Lab, Urbana, IL 61801.


Hide All

also with Kulite Semiconductor Products, Inc.



Hide All
1. Canham, L.T., Leong, W.Y., Beale, M.J., Cox, T.J., and Taylor, L., Appl. Phys. Lett. 57, 1046 (1990).
2. Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE Trans. Electron Device Lett. EDL-12, 691 (1991).
3. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992).
4. Smith, R.L. and Collins, S.D., J. Appl. Phys. 71, R1 (1992).
5. Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett. 60, 2514 (1992).
6. Tsybeskov, L., Duttagupta, S.P., Hirshman, K.D. and Fauchet, P.M., Appl. Phys. Lett. 68, 2058 (1996).
7. Hamilton, B., Semicond. Sci Technol. 10, 1187 (1995).
8. Gardelis, S. and Hamilton, B., J. Appl. Phys. 76, 5328 (1994).
9. Pickering, C., Beale, M.I.J., Robbins, D.J., Pearson, P.J. and Greef, R., J. Appl. Phys. C: Solid State Physics 17, 6535 (1984).
10. Li, K., Diaz, D., Campbell, J., and Tsai, C., in Porous Silicon, edited by Feng, Z.C. and Tsu, R. (World Scientific, Singapore, 1994) pp. 261274.
11. Lauerhaas, J.M., Credo, G.M., Heinrich, J.L., and Sailor, M.J., J. Am. Phys. Soc. 114, 1911 (1992).
12. Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Solid State Comm. 95, 429 (1995).
13. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F., and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).
14. Li, K-H., Tsai, C., Cambell, J.C., Hance, B.K., and White, J.M., Appl. Phys. Lett. 62, 3501 (1993).
15. Li, G., Hou, X., Yuan, S., Chen, H., Zhang, F., Fan, H., Wang, X., J. Appl. Phys. 80, 5967 (1996).
16. Brander, R.W. and Sutton, R.P. Br, J. Appl. Phys. 2, 309 (1969).
17. Muench, W.V., Kuerzinger, W.. and Pfaffeneder, I., Solid State Electron. 19, 871 (1976).
18. Ikeda, M., Hayakawa, T., Yamagiwa, S., Matsunami, H., and Tanaka, T.. J. Appl. Phys. 50, 8215 (1979).
19. Nishino, S., Ibaragi, A.. Matsunami, H., and Tanaka, T., Jpn. J. Appl. Phys, 19, L353 (1980).
20. Edmond, J.A., Kong, H.-S., Carter, C. Jr., Physica B 185, 453 (1993).
21. Shor, J.S., Grimberg, I., Weiss, B.Z., and Kurtz, A.D., Appl. Phys. Lett. 62, 2836 (1993).
22. Shor, J.S., Bemis, L., Kurtz, A.D., Grimberg, I., Weiss, B.Z., MacMillan, M.F., Choyke, W.J., J. Appl. Phys. 76, 4045 (1994).
23. Matsumoto, T., Takahashi, J., Tamaki, T., Fugati, T., Mimura, H., and Kanemitsu, Y., Appl. Phys. Lett. 64, 226 (1994).
24. Petrova-Koch, V., Sreseli, O., Polisski, G., Kovalev, D., Muschik, T., and Koch, F., Thin Solid Films 255, 107 (1995).
25. Konstantinov, A., Henry, A., Harris, C.I. and Janzen, E., Appl. Phys Lett. 66, 2250 (1995).
26. Danishevskii, A.M., Shuman, V.B., Rogachev, A.Yu., and Ivanov, P.A., Semiconductors 29, 1106 (1995).
27. Mimura, H., Matsumoto, T., Kanemitsu, Y., Appl. Phys. Lett. 65, 3350 (1994).
28. Konstantinov, A., Harris, C.I., and Janzen, E., Appl. Phys. Lett. 65, 2699 (1994).
29. MacMillan, M.F., Devaty, R.P., Choyke, W.J., Goldstein, D.R., Spanier, J.E., and Kurtz, A.D., J. Appl. Phys. 80, 2412 (1996).
30. Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Fugati, T., and Mimura, H., Phys. Rev. B 48, 2827 (1993).
31. Shor, J., Kurtz, A.D., Grimberg, I., and Weiss, B.Z., Osgood, R.M., accepted for publication in J. Appl. Phys.
32. Smith, R.L. and Collins, S.D., J. Appl. Phys. 71, R1 (1992).
33. von Munch, W. and Pfaffeneder, I., J. Electrochem. Soc. 122, 642 (1990).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed