Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T07:10:36.175Z Has data issue: false hasContentIssue false

Effects of N2O addition on the properties of ZnO thin films grown using high-temperature H2O generated by catalytic reaction

Published online by Cambridge University Press:  09 January 2014

Naoya Yamaguchi
Affiliation:
Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
Eichi Nagatomi
Affiliation:
Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
Takahiro Kato
Affiliation:
Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
Koichiro Ohishi
Affiliation:
Nagaoka National College of Technology, Nagaoka, Niigata 940-8532, Japan
Yasuhiro Tamayama
Affiliation:
Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
Kanji Yasui
Affiliation:
Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
Get access

Abstract

The effects of N2O gas addition on the properties of zinc oxide films grown on a-plane (11-20) sapphire (a-Al2O3) substrates were investigated, using a chemical vapor deposition method based on the reaction between dimethylzinc and high-energy H2O produced by a Pt-catalyzed H2-O2 reaction. By employing an optimal N2O gas pressure, both the film crystallinity and crystal orientation were improved. Subsequent to treatment with N2O, the electron mobility of films at room temperature increased from 207 to 234 cm2/Vs while the electron concentration decreased at low temperatures. In addition, the photoluminescence peak intensity of the nearband-edge emission was increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hickernell, F. S., Proc. IEEE, 64, 631 (1976).CrossRefGoogle Scholar
Pizzini, S., Butta, N., Narducci, D., and Palladino, M., J. Electrochem. Soc., 136, 1945 (1989).CrossRefGoogle Scholar
Jeong, I. S., Kim, J. H., and Im, S., Appl. Phys. Lett., 83, 2946 (2003).CrossRefGoogle Scholar
Minami, T., Semicond. Sci. Technol., 20, S35 (2005).CrossRefGoogle Scholar
Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D., Bertram, F., Christein, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A. V., Phys. Stat. Sol. (b), 241, 231 (2004).CrossRefGoogle Scholar
Fons, P., Iwata, K., Niki, S., Yamada, A., and Matsubara, K.: J. Cryst. Growth, 201202, 627 (1999).CrossRefGoogle Scholar
Miyamoto, K., Sano, M., Kato, H., and Yao, T., J. Cryst. Growth, 265, 34 (2004).CrossRefGoogle Scholar
Ohgaki, T., Ohashi, N., Kanemoto, H., Wada, S., Adachi, Y., Haneda, H., and Tsurumi, T., J. Appl. Phys., 93, 1961 (2003).CrossRefGoogle Scholar
Wei, M., Boutwell, R. C., Faleev, N., Osinsky, A., and Schoenfeld, W. V., J. Vac. Sci. Technol. B, 31, 041206 (2013).CrossRefGoogle Scholar
Kaidashev, E. M., Lorenz, M., von Wenckstern, H., Rahm, A., Semmelhack, H. C., Han, K.-H., Benndorf, G., Bundesmann, C., Hochmuth, H., and Grundmann, M., Appl. Phys. Lett., 82, 3901 (2003).CrossRefGoogle Scholar
Ohtomo, A. and Tsukazaki, A., Semicond. Sci. Technol., 20, S1 (2005).CrossRefGoogle Scholar
Zhao, J-L., Li, X-M., Bian, J-M., Yu, W-D., and Gao, X-D., J. Crystal Growth, 276, 507 (2005).CrossRefGoogle Scholar
Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nature Materials, 4, 42 (2005).CrossRefGoogle Scholar
Mundle, R. M., Terry, H. S., Santiago, K., Shaw, D., Bahoura, M., Pradhan, A. K., Dasari, K., and Palai, R., J. Vac. Sci. Technol. A, 31, 01A146 (2013).CrossRefGoogle Scholar
Fujimoto, E., Sumiya, M., Ohnishi, T., Watanabe, K., Lippmaa, M., Matsumoto, Y., and Koinuma, H., Appl. Phys. Express, 2, 045502 (2009).CrossRefGoogle Scholar
Dai, J., Jiang, F., Pu, Y., Wang, L., Fang, W., and Li, F., Appl. Phys., A 89, 645 (2007).CrossRefGoogle Scholar
Roro, K. T., Kassier, G. H., Dangbegnon, J. K., Sivaraya, S., Westraadt, J. E., Neethlimg, J. H., Leitch, A. W. R., and Botha, J. R., Semicond. Sci. Technol., 23, 055021 (2008).CrossRefGoogle Scholar
Tan, S. T., Chen, B. J., Sun, X. W., Hu, X., Zhang, X. H., and Chua, S. J., J. Cryst. Growth, 281, 571 (2005).CrossRefGoogle Scholar
Yasui, K., Miura, H., and Nishiyama, H., MRS Symp. Proc., 1315, 21 (2011).CrossRefGoogle Scholar
Dai, J., Su, H., Wang, L., Pu, Y., Fang, W., and Jiang, F., J. Cryst. Growth, 290, 426 (2006).CrossRefGoogle Scholar
Yan, Y. and Wei, S-H., phy. stat. sol. (b), 245, 641 (2008).CrossRefGoogle Scholar
Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoc, H., J. Appl. Phys., 98, 041301 (2005).CrossRefGoogle Scholar