Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T16:07:23.389Z Has data issue: false hasContentIssue false

Effects of Hydration on Nanoscale Structural Morphology and Mechanics of Individual Type I Collagen Fibrils

Published online by Cambridge University Press:  18 May 2012

Joseph M. Wallace
Affiliation:
Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 W Michigan St. SL220, Indianapolis, IN 46202, U.S.A.
Chad Harding
Affiliation:
Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 W Michigan St. SL220, Indianapolis, IN 46202, U.S.A.
Arika Kemp
Affiliation:
Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 W Michigan St. SL220, Indianapolis, IN 46202, U.S.A.
Get access

Abstract

Type I collagen is one of the most vital proteins in our bodies and serves a number of structural roles. Despite collagen’s importance, little is known about its nanoscale morphology in tissues and how morphology relates to mechanical function. This study directly probes nanoscale structure and mechanics in collagen as a function of hydration utilizing atomic force microscopy investigations of the mouse tail tendon. We demonstrate that collagen morphology and mechanical properties at the nanoscale change with dehydration, indicating that hydration is a factor which must be considered when performing studies at any length scale in collagen-based tissues. Studies are underway to further investigate this phenomenon and to determine how these properties change with disease in tendon and other Type I collagen-based tissues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kadler, K. E., Holmes, D. F., Trotter, J. A. and Chapman, J. A., Biochemical Journal 316, 111 (1996).10.1042/bj3160001Google Scholar
2. Canty, E. G. and Kadler, K. E., Journal of Cell Science 118 (7), 13411353 (2005).10.1242/jcs.01731Google Scholar
3. Wallace, J. M., Erickson, B., Les, C. M., Orr, B. G. and Holl, M. M. B., Bone 46 (5), 13491354 (2010).10.1016/j.bone.2009.11.020Google Scholar
4. Wallace, J. M., Chen, Q. S., Fang, M., Erickson, B., Orr, B. G. and Holl, M. M. B., Langmuir 26 (10), 73497354 (2010).10.1021/la100006aGoogle Scholar
5. Wallace, J. M., Orr, B. G., Marini, J. C. and Banaszak Holl, M. M., Journal of Structural Biology (173), 146152 (2011).10.1016/j.jsb.2010.08.003Google Scholar
6. Hodge, A. J. and Petruska, J. A., in Aspects of Protein Structure, edited by Ramachandran, G. N. (Academic Press, New York, 1963), pp. 289306.Google Scholar
7. Orgel, J. P. R. O., Irving, T. C., Miller, A. and Wess, T. J., Proceedings of the National Academy of Sciences 103 (24), 90019005 (2006).10.1073/pnas.0502718103Google Scholar
8. Balooch, M., Habelitz, S., Kinney, J. H., Marshall, S. J. and Marshall, G. W., Journal of structural biology 162 (3), 404410 (2008).10.1016/j.jsb.2008.02.010Google Scholar
9. Baselt, D. R., Revel, J. P. and Baldeschwieler, J. D., Biophysical journal 65 (6), 26442655 (1993).10.1016/S0006-3495(93)81329-8Google Scholar
10. Raspanti, M., Congiu, T. and Guizzardi, S., Matrix Biology 20 (8), 601604 (2001).10.1016/S0945-053X(01)00174-3Google Scholar
11. Bella, J., Brodsky, B. and Berman, H. M., Structure 3 (9), 893906 (1995).10.1016/S0969-2126(01)00224-6Google Scholar
12. Beer, F. P., Johnston, E. R. Jr., DeWolf, J. T. and Mazurek, D. F., Mechnanics of Materials, 5th ed. (McGraw Hill, Boston, 2008).Google Scholar
13. Grant, C. A., Brockwell, D. J., Radford, S. E. and Thomson, N. H., Applied Physics Letters 92 (233902), 13 (2008).10.1063/1.2937001Google Scholar