Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T03:28:49.563Z Has data issue: false hasContentIssue false

Effects of High Temperature Process Steps on Void Size Distributions in Passivated, Narrow Aluminum Lines

Published online by Cambridge University Press:  22 February 2011

D. A. Lilienfeld
Affiliation:
National Nanofabrication Facility, Cornell University, Ithaca, NY 14853
P. Børgesen
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

Narrow Al lines were passivated at 300°C and subsequently annealed at 400°C for an hour. The passivation layer was then removed and the lines analyzed for thermal stress induced voids. Effects of the multiple high temperature process steps necessary in chip manufacturing were simulated by repeated anneals. Renewed void nucleation occurred during cool-down from each anneal, leading to a systematic increase in void density. In contrast, the maximum void size did not increase with number of anneals while it did increase with aging time for a single anneal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Klema, J., Pyle, R. and Domangue, E., IEEE Int. Reliability Symp. 22 1 (1984)Google Scholar
2) Curry, J., Fitzgibbon, G., Guan, Y., Muouo, R., Nelson, G., and Thomas, A, IEEE Int. Reliability Symp. 22 6 (1984)Google Scholar
3) Yue, J. T., Funsten, W. P., and Taylor, R. V., IEEE Int. Reliability Symp. 23 126 (1985)Google Scholar
4) Turner, T. and Wendel, K., IEEE Int. Reliability Symp. 23 142 (1985)Google Scholar
5) Lin, M. R. and Yue, J. T., IEEE Int. Reliability Symp. 24 164 (1986)Google Scholar
6) Hinode, K., Owada, N., Nishida, T., and Mukai, K., J. Vac. Sci. Techn. B5 518 (1987)Google Scholar
7) Sullivan, T. D., Appl. Phys. Lett. 55 2399 (1989)Google Scholar
8) Korhonen, M. A., Black, R. D. and Li, C.-Y., J. Appl Phys. 69 1748 (1991)Google Scholar
9) Groothuis, S. K. and Schroen, W. H., IEEE Int. Reliability Symp. 25 1 (1987)Google Scholar
10) Hummel, R. E., S., Matts Goho and Dehoff, R. T., IEEE Int. Reliability Symp. 22 234 (1984)Google Scholar
11) Li, C.-Y., Børgesen, P., and Sullivan, T. D., Appl. Phys. Lett. 59 1464 (1991)Google Scholar
12) Børgesen, P., Li, C.-Y., Korhonen, M. A., and Brown, D. D., Proc. 1st Int. Workshop on Stress Induced Phenomena in Metallizations, Ithaca, 1991 Google Scholar
13) Paszkiet, C., Børgesen, P., Korhonen, M. A., and Li, C.-Y., submitted to Appl. Phys. Lett.Google Scholar
14) Paszkiet, C. A., Korhonen, M. A. and Li, C.-Y., Mat. Res. Soc. Symp. Proc. 188 153 (1990)Google Scholar
15) Børgesen, P., Li, C.-Y., Basa, C., and Sullivan, T. D., to be publishedGoogle Scholar
16) Basa, C., M. Eng. Report, Cornell University, 1990 Google Scholar
17) Børgesen, P., Korhonen, M. A., Brown, D. D. and Li, C.-Y., this symposiumGoogle Scholar
18]) Børgesen, P., Lee, J. K., Paszkiet, C. A., and Li, C.-Y., Appl. Phys. Lett. 59 1341 (1991)Google Scholar
19) Børgesen, P., Lee, J. K., Korhonen, M. A., Li, C.-Y., Mat. Res. Soc. Symp. Proc. 225 (1991)Google Scholar
20) Tezaki, A., Mineta, T., Egawa, H. and Noguchi, T., IEEE Proc 28th Int. Reliability Physics Symp. 221 (1990)Google Scholar