Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T13:43:09.265Z Has data issue: false hasContentIssue false

Effects of Helium Ion Implantation on the Optical and Crystal Properties of GaAs

Published online by Cambridge University Press:  21 February 2011

R. C. Bowman Jr
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
P. M. Adams
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
J. F. Knudsen
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
S. C. Moss
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
P. A. Dafesh
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
D. D. Smith
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
M. H. Herman
Affiliation:
Charles Evans & Associates, 301 Chesapeake Drive, Redwood City, CA 94063
I. D. Ward
Affiliation:
Charles Evans & Associates, 301 Chesapeake Drive, Redwood City, CA 94063
Get access

Abstract

The damage to GaAs crystals caused by helium ion implants has been monitored by changes in the Raman scattering phonon modes, double-crystal x-ray diffraction rocking curves, photoreflectance (PR), and electron beam electroreflectance (EBER) band edge transitions. As the implanted helium ion dose was increased, the various techniques revealed threshold damage behavior at very different levels. Although PR and EBER were the most sensitive to the defects created at the lowest ion doses, all techniques indicated substantial disorder for implants greater than 1014 ions/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D. D., Knudsen, J. F., Bowman, R. C. Jr., Herman, M. H., and Moss, S. C., in Proc. IEEE Lasers and Electro-Optics Society Meeting, Santa Clara, CA, November 24, 1988.Google Scholar
2. Sadana, D. K., Nucl. Instru. Meth. Phys. Res. B7/8. 375 (1985).Google Scholar
3. Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C., and Williams, J. S., Nucl. Instru. Meth. Phys. Res. B 19/20, 369 (1987).Google Scholar
4. Paine, B. M., Hurvitz, N. N., and Speriosu, V. S., J. Appl. Phys. 61, 1335 (1987); B. M. Paine and V. S. Speriosu, J. Appl. Phys., 62, 1704 (1987).Google Scholar
5. Burns, G., Dacol, F. H., Wie, C. R., Burstein, E., and Cardona, M., Solid State Commun. 62, 449 (1987).Google Scholar
6. Bowman, R. C. Jr., Jamieson, D. N., Adams, P. M., and Alt, R. L., Symp. Proc. Soc. Photo-Optical Instrum. Eng. 946, 65 (1988).Google Scholar
7. Biersack, J. P. and Haggmark, L. G., Nucl. Instru. Meth. 174, 257 (1980).Google Scholar
8. Tiong, K. K., Amirtharaj, P. M., Pollak, F. A., and Aspnes, D. E., Appl. Phys. Lett. 44, 122 (1984).Google Scholar
9. Brown, R. L., Schoonveld, L., Abels, L. L., Sundaram, S., and Raccah, P. M., J. Appl. Phys. 52, 2950 (1981).Google Scholar
10. Raccah, P. M., Garland, J. W., Butrill, S. E. Jr., Francke, L., and Jackson, J., Appl. Phys. Lett. 52, 1584 (1988).Google Scholar
11. Pikhtin, A. N., Airaksinen, V. M., Lipsanen, H., and Tuomi, T., J. Appl. Phys. 65, 2556 (1989).Google Scholar
12. Albers, W. A., Phys. Rev. Lett. 23, 410 (1969).Google Scholar
13. Aspnes, D. E., Surf. Sci. 37, 418 (1973).Google Scholar