Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T14:45:57.869Z Has data issue: false hasContentIssue false

Effects of Germanium on Grain size and surface roughness of the solid phase crystallized polycrystalline Si1−xGex films

Published online by Cambridge University Press:  10 February 2011

Jin-Won Kim
Affiliation:
Department of Metallurgical Engineering, Seoul National University, Seoul, Korea
Myung-Kwan Ryu
Affiliation:
Department of Metallurgical Engineering, Seoul National University, Seoul, Korea
Tae-Hoon Kim
Affiliation:
Department of Metallurgical Engineering, Seoul National University, Seoul, Korea
Ki-Bum Kim
Affiliation:
Department of Metallurgical Engineering, Seoul National University, Seoul, Korea
Sang-Joo Kim
Affiliation:
Department of Metallurgical Engineering, Seoul National University, Seoul, Korea
Get access

Abstract

Si1−xGex (x≤0.5) films were deposited by using Si2H4 and GeH4 source gases in a low pressure chemical vapor deposition (LPCVD). The deposition temperature was varied from 375 °C for Si0.5Ge0.5 to 450 °C for Si film in order to deposit amorphous Si1−xGex films and the deposition pressure was about 1 Torr. The grain size of polycrystalline Si1−xGex films made by solid phase crystallization (SPC) decreases with germanium content in the films, and the activation energy obtained from the dependence of grain size on annealing temperature was 0.4 eV for Si and 0.45 eV for Si0 69Ge0.31. From obtaining a similar activation energy irrespective of Ge content in the film, the decrease of grain size with germanium content is attributed to the difference of the asdeposited film conditions. The surface roughness of Si1−xGex films investigated by atomic force microscope (AFM) increases with germanium content in the film before and after SPC. For instance, the root-mean square (rms) values of the surface roughness of the as-deposited Si and Si0.5Ge0.5 films were 2.3 and 17 Å, while those values were increased to 2.6 and 41 Å, respectively, after SPC. In order to reduce the surface roughness of Si0.5Ge0.5 film, we have deposited a thin Si capping layer on top of the Si1−xGex layer and identified that this capping layer effectively reduces the increase of surface roughness after SPC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hatalis, M. K. and Greve, D. W., IEEE Electron Device Lett. 8, 361 (1987)Google Scholar
2. Harbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., Appl. Phys. Lett. 42, 249 (1983)Google Scholar
3. Hatalis, M. K. and Greve, D. W., J. Appl. Phys., 63, 2260 (1988)Google Scholar
4. Hwang, C. W., Ryu, M. K., Kim, K. B., Lee, S. C., and Kim, C. S., J. Appl. Phys. 77, 3042 (1995)Google Scholar
5. Kim, J. W., Ryu, M. K., Kim, K. B., Han, M. K., Kim, C. S., and Kim, S. J., Proceedings of the Second Pacific Rim International Conference on Advanced Materials and Processing, Vol. 2, p1273 (1995)Google Scholar
6. Tsai, J. A., Tang, A. J., Noguchi, T., and Reif, R., J. Electrochem. Soc. 142, 3220 (1995)Google Scholar
7. King, T.-J. and Saraswat, K. C., IEEE Trans. Electron Devices 41, 1581 (1994)Google Scholar
8. Mäenpää, M. and Lau, S. S., Thin Solid Films 82, 343 (1981)Google Scholar
9. Kung, J. H., Hatalis, M. K., and Kanicki, J., Thin Solid Films 216, 137 (1992)Google Scholar
10. Kim, J. W., Ryu, M. K., Kim, K. B., and Kim, S. J., J. Electrochem. Soc. 143, 363 (1996)Google Scholar
11. King, T.-J., and Saraswat, K. C., J. Electochem. Soc. 141, 2235 (1994)Google Scholar
12. Iverson, R. B., and Reif, R., J. Appl. Phys. 62, 1675 (1987)Google Scholar
13. Nakazawa, K., J. Appl. Phys. 69, 1703 (1991)Google Scholar
14. Hong, C. H., Park, C. Y., and Kim, H. J., J. Appl. Phys. 71, 5427 (1992)Google Scholar
15. Harbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., J. Electochem. Soc. 131, 675 (1984)Google Scholar
16. Kamins, T., Polycrystalilne Silicon For Integrated Circuit Application, pp71, Kluwer Academic Publishers, USA, 1988 Google Scholar
17. Ibok, E. and Garg, S., J. Electrochem. Soc. 140, 2927 (1993)Google Scholar
18. Nayak, D., Kamjoo, K., Woo, J. C. S., Park, J. S., and Wang, K. L., Appl. Phys. Lett. 56, 66 (1990)Google Scholar
19. Prabhakaran, K., Nishioka, T., Sumitomo, K., Kobayashi, Y., and Ogino, T., Appl. Phys. Lett. 62, 864 (1993)Google Scholar
20. Liou, H. K., Mei, P., Gennser, U., and Yang, E. S., Appl. Phys. Lett. 59, 1200 (1991)Google Scholar