Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T17:07:20.630Z Has data issue: false hasContentIssue false

Effects of GaN passivation with SiO2 and SiNx studied by photoluminescence and surface potential electric force microscopy

Published online by Cambridge University Press:  01 February 2011

Serguei Chevtchenko
Affiliation:
chevtchenkos@vcu.edu, VCU, Electrical Engineering, 601 West Main Street, Room 447, P. O. Box 843072, Richmond, VA, 23284-3072, United States, (804) 827-7000 Ext. 451
M A Reshchikov
Affiliation:
mreshchi@vcu.edu, Virginia Commonwealth University, Physics, United States
K Zhu
Affiliation:
kzhu@mail1.vcu.edu, Virginia Commonwealth University, Electrical Engineering, United States
Y-T Moon
Affiliation:
kzhu@mail1.vcu.edu, Virginia Commonwealth University, Electrical Engineering, United States
A A Baski
Affiliation:
aabaski@vcu.edu, Virginia Commonwealth University, Physics, United States
H Morkoç
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical Engineering, United States
Get access

Abstract

The influence of passivation with SiO2 and SiNx on optical properties and surface band bending in unintentionally doped GaN has been studied by steady-state photoluminescence (PL) and surface potential electric force microscopy (SP-EFM). For both types of passivation we observed a significant increase of PL intensity in air ambient at room temperature. The measured surface potential was the same for control and passivated samples within the experimental error. The value of the surface band-bending was determined as 1.0±0.2 eV in all cases. We suggest that the strong enhancement of PL is caused by reduction of contribution of the surface states to recombination of photogenerated carriers after passivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cojocari, O., Popa, V., Ursaki, V. V., Tiginyanu, I. M., Hartnagel, H. L., and Daumiller, I., Semicond. Sci. Technol. 19 (2004), p. 1273 CrossRefGoogle Scholar
2 Adivarahan, V., Simin, G., Yang, J. W., Lunev, A., Asif Khan, M., Pala, N., Shur, M., and Gaska, R., Appl. Phys. Lett., 77(6) (2000), p. 863 CrossRefGoogle Scholar
3 Bae, C., Lucovsky, G., Surface Science 566-568 (2004), p. 356 CrossRefGoogle Scholar
4 Bae, C., Krug, C., Lucovsky, G., Chakraborty, A., and Mishra, U., J. Appl. Phys., 96(5) (2004), p. 2674 CrossRefGoogle Scholar
5 Green, B. M., Chu, K. K., Chumbes, E. M., Smart, J. A., Shealy, J. R., and Eastman, L. F., IEEE Electron Device Letters, 21(6) (2000), p. 268 CrossRefGoogle Scholar
6 Javorka, P., Bernat, J., Fox, A., Marso, M., Luth, H., and Kordos, P., Electr. Lett., 39(15) (2003), p. 1155 CrossRefGoogle Scholar
7 Luo, B., Mehandru, R., Kim, J., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R., Pearton, S. J., Fitch, R., Gillespie, J., Jenkins, T., Sewell, J., Via, D., Crespo, A., and Irokawa, Y., Journal of the Electronic Society, 149(11) (2002), p. G613 CrossRefGoogle Scholar
8 Moon, Y. T., Fu, Y., Yun, F., Dogan, S., Mikkelson, M., Johnstone, D., and Morkoç, H., Phys. Stat. Sol. (a) 202(5), (2005), p. 718 CrossRefGoogle Scholar
9 Hashizume, T., Ootomo, S., Inagaki, T., and Hasegawa, H., J. Vac. Sci. Technol. B 21(4) (2003), p. 1828 CrossRefGoogle Scholar
10 Park, D. G., Tao, M., Li, D., Botchkarev, A. E., Fan, Z., Liang, H., Abelson, J. R., Rockett, A., Morkoç, H., Heyd, A. R., and Alterovitz, S. A., J. Vac Sci. Technol. B. Vol. 14(4), (1996), p. 2674 CrossRefGoogle Scholar
11 Bermudez, V. M., J. Appl. Phys. 80, (1996), p. 1190 CrossRefGoogle Scholar
12 Reshchikov, M. A., Sabuktagin, S., Johnstone, D. K., and Morkoç, H., J. Appl. Phys. 96, (2004), p. 2556 CrossRefGoogle Scholar
13 Cho, Sang-Jun, Dogan, S., Sabuktagin, S., Reshchikov, M. A., Johnstone, D. K., and Morkoç, H., Appl. Phys. Lett. 84, (2004), p. 3070 CrossRefGoogle Scholar
14 Reshchikov, M. A. and Korotkov, R. Y., Phys. Rev. B 64, (2001), p. 115205 CrossRefGoogle Scholar
15 Reshchikov, Michael A. and Morkoç, Hadis, J. Appl. Phys. 97, (2005), p. 061301 CrossRefGoogle Scholar
16 Hashizume, T., Ootomo, S., Oyama, S., Konishi, M., and Hasegawa, H., J. Vac. Technol. B 19(4), (2001), p. 1675 CrossRefGoogle Scholar
17 Mönch, W., “Semiconductor surface and interfaces”, Springer-Verlag, (1993), p. 51.CrossRefGoogle Scholar
18 Hasegawa, H., Inagaki, T., Ootomo, S., and Hashizume, T., J. Vac. Sci. Technol. B 21(4), (2003), p. 1844 CrossRefGoogle Scholar
19 Zafar Iqbal, M., Reshchikov, M. A., He, L., and Morkoç, H., J. Elec. Materials, 32(5), (2003), p. 346 CrossRefGoogle Scholar