Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T03:45:29.619Z Has data issue: false hasContentIssue false

Effects of Dislocation and Microstructure on Pseudoelasticity in D03-Type Fe3Al Single Crystals

Published online by Cambridge University Press:  26 February 2011

Yukichi Umakoshi
Affiliation:
umakoshi@mat.eng.osaka-u.ac.jp, Osaka University, Division of Materials and Manufacturing Science, 2-1, Yamada-oka, Suita, Osaka, 565-0871, Japan, 81-6-6879-7494, 81-6-6879-7495
Takashi Nakajima
Affiliation:
takashi.nakajima@mat.eng.osaka-u.a.jp, Osaka University, Division of Materials and Manufacturing Science, 2-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
Hiroyuki Y. Yasuda
Affiliation:
hyyasuda@mat.eng.osaka-u.ac.jp, Osaka University, Research Center for Ultra-High Voltage Electron Microscopy, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
Get access

Abstract

New type pseudoelasticity in Fe3Al with the D03 structure was examined using the single crystals. The pseudoelasticity occurred due to a reversible motion of 1/4<111> superpartials dragging the nearest-neighbor anti-phase boundaries. The chemical composition and microstructure of Fe3Al alloys strongly influenced the shape recovery ratio and Fe-23.0at%Al alloy with fine domain structure was the most favorable for the appearance of the pseudoelasticity. The recovery ratio of Fe-23.0at%Al exceeded 80 % in the wide temperature range from -50 to 200 oC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Otsuka, K. and Wayman, C. M., Shape Memory Materials, (Cambridge University Press, 1998), pp.27.Google Scholar
2. Leamy, H. J. and Kayser, F. X., Phys. Stat. Sol., 34, 765 (1969).10.1002/pssb.19690340240Google Scholar
3. Kubin, L. P., Fourdeux, A., Guedou, J. Y. and Rieu, J., Phil. Mag., A46, 357 (1982).10.1080/01418618208239564Google Scholar
4. Brinck, A., Engelke, C. and Neuhäuser, H., Scripta Metall., 37, 569 (1997).10.1016/S1359-6462(97)00160-7Google Scholar
5. Langmaack, E. and Nembach, E., Philos. Mag., 79, 2359 (1999).Google Scholar
6. Yasuda, H. Y., Nakano, K., Nakajima, T., Ueda, M. and Umakoshi, Y., Acta Mater., 51, 5101 (2003).Google Scholar
7. Yasuda, H. Y., Nakajima, T., Nakano, K., Yamaoka, K., Ueda, M. and Umakoshi, Y., Acta Mater., 53, 5343 (2005).10.1016/j.actamat.2005.08.011Google Scholar
8. Oki, K., Hasaka, M., Eguchi, T., Jpn. J. Appl. Phys., 12, 1522 (1973).10.1143/JJAP.12.1522Google Scholar
9. Umakoshi, Y., Yamaguchi, M. and Yamane, T., Proc. The Yamada Conference IX on Dislocation in Solids, edited by Suzuki, H., University of Tokyo Press, Tokyo, 81 (1985).Google Scholar