Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T22:51:46.487Z Has data issue: false hasContentIssue false

Effects of Deposition Parameters on the Structure, Morphology and Chemical Composition of PLZT Thin Films

Published online by Cambridge University Press:  15 February 2011

R. M. Ribeiro
Affiliation:
Universidade do Minho, Departamento de Física, Largo do Paço, 4719 Braga Codex, Portugal
M. J. M. Gomes
Affiliation:
Universidade do Minho, Departamento de Física, Largo do Paço, 4719 Braga Codex, Portugal
E. De Matos Gomes
Affiliation:
Universidade do Minho, Departamento de Física, Largo do Paço, 4719 Braga Codex, Portugal
J. A. Ferreira
Affiliation:
Universidade do Minho, Departamento de Física, Largo do Paço, 4719 Braga Codex, Portugal
P. L. Q. Mantas
Affiliation:
Universidade de Aveiro, Dep. de Engenharia de Cerâmica e do Vidro, 3800 Aveiro, Portugal
J. L. Baptista
Affiliation:
Universidade de Aveiro, Dep. de Engenharia de Cerâmica e do Vidro, 3800 Aveiro, Portugal
M. M. R. R. Costa
Affiliation:
Universidade de Coimbra, Departamento de Física, 3000 Coimbra, Portugal
Get access

Abstract

PLZT thin films from a stoichiometric (9/65/35) commercial target were laser deposited using the second and third harmonics of a nanosecond Nd:YAG laser. The films were grown on oriented sapphire substrates and analysed by X-ray diffraction, SEM and EDX techniques. The influence of the deposition parameters laser fluence and substrate temperature on the physical characteristics of the films is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hartling, G.H., Ferroelectrics 75, 25 (1987).Google Scholar
2. Wang, F., Haertling, G.H., Appl. Phys. Lett. 63, 1730 (1993)CrossRefGoogle Scholar
3. Auciello, O., Kingon, A.I., Krauss, A.R. and Lichtenwalner, D.J., Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, NATO ASI Series E, 234, 151 (1992).Google Scholar
4. Chrisey, D.B. and Inam, A., MRS Bulletin 17 (2), 37 (1992).Google Scholar
5. Cheung, J. and Horwitz, J., MRS Bulletin 17 (2), 30 (1992).Google Scholar
6. Grabowski, K.S., Horwitz, J.S., Chrisey, D.B., Ferroelectrics 116, 19 (1991).Google Scholar
7. Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E., Appl. Phys. Lett. 59 (13), 1565 (1991).Google Scholar
8. Petersen, G.A. Jr., McNeil, J.R., Thin Solid Films 220, 87 (1992).Google Scholar
9. Tanaka, K., Higuma, Y., Yokoyama, K., Nakagawa, T. and Hamakawa, Y., Jpn. J. Appl. Phys. 15 (7), 1381 (1976); E.T. Keve, K.L. Bye, J. Appl. Phys. 46 (2), 810 (1975).Google Scholar
10. Adachi, H., Mitsuyu, T., Yamazaki, O., Wasa, K., J. Appl. Phys. 60 (2), 736 (1986).Google Scholar
11. Cullity, B.D., Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc, 1978, Reading, Massachussets, 102 Google Scholar
12. Krupanidhi, S.B., Maffei, N., Sayer, M. and El-Assal, K., J. Appl. Phys. 54 (11), 6601 (1983).Google Scholar
13. Kidoh, H., Ogawa, T., Yashima, H., Morimoto, A., Shimizu, T., Jpn. J. Appl. Phys. 30 (9B), 2167 (1991).CrossRefGoogle Scholar