Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-10T01:01:27.687Z Has data issue: false hasContentIssue false

Effects of defects on the electrical and magnetic properties of Ga1−x MnxAs layer

Published online by Cambridge University Press:  01 February 2011

D. Koh
Affiliation:
Nano Device Research Center, Korea Institute of Science and Technology, Seoul, Korea Dep. of Electronic Engineering, Kyung Hee University, Kyunggi-do, Korea
J.-B. Park
Affiliation:
Nano Device Research Center, Korea Institute of Science and Technology, Seoul, Korea
Y. J. Park
Affiliation:
Nano Device Research Center, Korea Institute of Science and Technology, Seoul, Korea
J. I. Lee
Affiliation:
Nano Device Research Center, Korea Institute of Science and Technology, Seoul, Korea
C. Park
Affiliation:
Dep. of Physics, Dongguk University, Seoul, Korea
H. Cho
Affiliation:
Dep. of Physics, Dongguk University, Seoul, Korea
Y. M. Kim
Affiliation:
Seoul branch, Korea Basic Science Institute, Korea University, Seoul, Korea
I.-W. Park
Affiliation:
Seoul branch, Korea Basic Science Institute, Korea University, Seoul, Korea
K. S. Chung
Affiliation:
Dep. of Electronic Engineering, Kyung Hee University, Kyunggi-do, Korea
Get access

Abstract

We investigated the effects of V/III flux ratios on the Curie temperature, TC, in Ga1−x Mnx As layers with various Mn mole fractions of x = 0.03 and 0.05. A 75 nm thick GaMnAs layer was grown at the temperature of 250 °C with various V/III flux ratios of 25∼34. The low temperature molecular beam epitaxy (LT-MBE) method for growth of GaMnAs layer caused the defects related by excess As and Mn interstitial, and these leaded the formation of deep level. We investigated that formation of deep level was established with various Mn mole fraction for V/III flux ratio 34. The changes of TC are observed by varying V/III flux ratio with a fixed Mn mole fraction. The TC in the sample grown with a lower V/III flux ratio of 25 is found to be higher comparing to that with higher V/III flux ratio of 34 at a fixed high Mn concentration (x = 0.05). Although the Mn concentration increases, the TC is not much changed when the V/III flux ratio is high of 34. The changes of TC with various V/III flux ratios are explained by the existence of low temperature grown defects, which are clarified by the deep level transient spectroscopy measurement. The prime species of defects are found to be AsGa and MnI etc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ohno, H., Science 281, 951 (1998).Google Scholar
[2] Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S. and Iye, Y., Appl. Phys. Lett. 69, 363 (1996).Google Scholar
[3] Munetaka, H., Ohno, H., von Molnár, S., Chang, L. L. and Esaki, L., Phys. Rev. Lett. 63, 1894 (1989).Google Scholar
[4] Ohno, H., Munetaka, H., Penney, T., von Molnár, S. and Chang, L. L., Phys. Rev. Lett. 68, 2664 (1992).Google Scholar
[5] Dietl, T., Ohno, H. and Matsukura, F., Physical Rev. B, 63, 195205 (2001).Google Scholar
[6] Zhang, F. C. and Rice, T. M., Phys. Rev. B 37, 3759 (1988).Google Scholar
[7] Kreissl, J., Ulrici, W., von Ortenberg, M., ElMetoui, M., Vasson, A. M., Vasson, A. and Gavaix, A., Phys. Rev. B 54, 10508 (1996).Google Scholar
[8] Ku, K. C., Potashnik, S. J., Chun, R. F., Schiffer, P. and Samarth, N., Appl. Phys. Lett. 82, 2302 (2003).Google Scholar
[9] Chiba, D., Takamura, K., Matsukura, F. and Ohno, H., Appl. Phys. Lett. 82, 3020 (2003).Google Scholar
[10] Sørensen, B. S., Lindelof, P. E., Sadowski, J., Mathieu, R. and Svedlindh, P., Appl. Phys. Lett. 82, 2287 (2003).Google Scholar
[11] Ditel, T., Ohno, H., Matsukura, F., Cilbert, J. and Ferrand, D., Science 287, 1019 (2000).Google Scholar
[12] Hayashi, T., Tanaka, M., Nishinaga, T., Shimada, H., Tsuchiya, H. and Otuka, Y., J. Crystal Growth 175/176, 1063 (1997).Google Scholar
[13] Hurle, D. T. J., J. Appl. Phys. 85, 6957 (1999).Google Scholar
[14] Campion, R. P., Edmonds, K. W., Zhao, L. X., Wang, K. Y., Foxon, C. T., Gallagher, B. L. and Staddon, C. R., J. Crystal Growth 251, 311 (2003).Google Scholar
[15] Campion, R. P., Edmonds, K. M., Zhao, L. X., Wang, K. Y., Foxton, C. T., Gallagher, B. L. and Staddon, C. R., J. Crystal Growth 247, 42 (2003).Google Scholar
[16] Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).Google Scholar
[17] Zener, C., Phys. Rev. 81, 440 (1950).Google Scholar
[18] Yoon, I. T., Kang, T. W., Kim, K. H. and Kim, D. J., Solid State Comm. 130, 627 (2004).Google Scholar
[19] Weiss, R. J., Marotta, A. S., J. Phys. Chem. Solids 9, 302 (1959).Google Scholar
[20] von Molnar, S., Kasuya, T., Phys. Rev. Lett. 21, 1757 (1968).Google Scholar