Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-08-04T23:36:27.059Z Has data issue: false hasContentIssue false

The Effects of Copper on the Interfacial Failure of Gold Films

Published online by Cambridge University Press:  21 March 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
D. P. Adams
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. J. Cordill
Affiliation:
Washington State University, Pullman WA 99164
N. Yang
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
D. F. Bahr
Affiliation:
Washington State University, Pullman WA 99164
Get access

Abstract

Nanoindentation test techniques were combined with deposition of highly stressed overlayers to study the interfacial fracture susceptibility of gold-on-copper and gold-2w/o-copper alloy films. The gold-on-copper film blistered readily following deposition of stressed tungsten overlayers. Additional stress from nanoindentation was required to trigger delamination and blister formation in the gold-copper alloy film. Fracture energies were then determined using mechanics-based models. The results show that the gold-copper alloy exhibited higher fracture energies than the gold-on-copper films. This increase scaled with film strength suggesting that the higher measured fracture energies in the gold-copper alloy film were due to solid solution hardening.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mittal, K. L., Electrocomponent Science and Technology. 3, 21 (1976).Google Scholar
2. Mattox, D. M., Thin Solid Films. 18, 173 (1973).Google Scholar
3. Hall, P. M., Morabito, J. M., and Panousis, N. T., Thin Solid Films, 41 341 (1977).Google Scholar
4. Feinstein, L. G. and Bindell, J. B., Thin Solid Films, 62, 37 (1979).Google Scholar
5. Hall, P. M., Panousis, N. T., and Menzel, P. R., IEEE Trans. Parts, Hybrids, Packag., PHP–11, 202 (1975).Google Scholar
6. Wei, Y. and Hutchinson, J. W., Int'l. Journal of Fracture, 9, 315 (1998).Google Scholar
7. Bagchi, A. and Evans, A. G., Thin Solid Films, 286, 203 (1996).Google Scholar
8. Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res., 9, 1734 (1994).Google Scholar
9. Kriese, M. D., Gerberich, W. W., and Moody, N. R., J. Mater. Res., 14, 3007 (1999).Google Scholar
10. Kriese, M. D., Moody, N. R., and Gerberich, W. W., Acta mater., 46, 6623 (1998).Google Scholar
11. Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J. W. and Wu, T. Y. (Academic Press Inc., vol. 29, New York 1992) pp. 63191.Google Scholar
12. Marshall, D. B. and Evans, A. G., J. Appl. Phys., 56, 2632 (1984).Google Scholar
13. Evans, A. G. and Hutchinson, J. W., Int. J. Solids Struct., 20, 455 (1984).Google Scholar
14. Moody, N. R., Hwang, R. Q., Venkataraman, S., Angelo, J. E., Norwood, D. P., and Gerberich, W. W., Acta mater. 46, 585 (1998).Google Scholar
15. Thouless, M. D., Hutchinson, J. W., and Liniger, E. G., Acta metall. mater. 40, 2639 (1992).Google Scholar
16. Mao, S. X. and Evans, A. G., Acta Mater., 45, 4263 (1997).Google Scholar
17 Volinsky, A. A., Tymiak, N. I., Kriese, M. D., Gerberich, W. W., and Hutchinson, J. W., in Fracture and Ductile vs Brittle Behavior-Theory, Modeling, and Experiment, edited by Beltz, G. E., Selinger, R. L. Blumberg, Marder, M. P., and Kim, K-S. (Mater. Res. Soc. Proc. 539, Pittsburgh, PA 1999) pp. 277290.Google Scholar
18. Moody, N. R., Adams, D. P., Volinsky, A. A., Kriese, M. D., and Gerberich, W. W., in Interfacial Engineering for Optimized Properties II, edited by Briant, C., Carter, C., Hall, E., and Nutt, S., (Mater. Res. Soc. Proc. 586, Pittsburgh, PA 2000) pp. 195205.Google Scholar