Skip to main content Accessibility help

Effects of Concurrent Co or Ti Silicidation on Transient Diffusion and End-of-Range Damage in Phosphorus Implanted Silicon

  • J.W. Honeycutt (a1), J. Ravi (a1) and G. A. Rozgonyi (a1)


The effects of Ti and Co silicidation on P+ ion implantation damage in Si have been investigated. After silicidation of unannealed 40 keV, 2×1015 cm-2 P+ implanted junctions by rapid thermal annealing at 900°C for 10–300 seconds, secondary ion mass spectrometry depth profiles of phosphorus in suicided and non-silicided junctions were compared. While non-silicided and TiSi2 suicided junctions exhibited equal amounts of transient enhanced diffusion behavior, the junction depths under COSi2 were significantly shallower. End-of-range interstitial dislocation loops in the same suicided and non-silicided junctions were studied by planview transmission electron microscopy. The loops were found to be stable after 900°C, 5 minute annealing in non-silicided material, and their formation was only slightly effected by TiSi2 or COSi2 silicidation. However, enhanced dissolution of the loops was observed under both TiSi2 and COSi2, with essentially complete removal of the defects under COSi2 after 5 minutes at 900°C. The observed diffusion and defect behavior strongly suggest that implantation damage induced excess interstitial concentrations are significantly reduced by the formation and presence of COSi2, and to a lesser extent by TiSi2. The observed time-dependent defect removal under the suicide films suggests that vacancy injection and/or interstitial absorption by the suicide film continues long after the suicide chemical reaction is complete.



Hide All
[1] Solmi, S., Angelucci, R., Cembali, F., Servidori, M., and Anderle, M., Appl. Phys. Lett. 51, 331 (1987).
[2] Mikaye, M. and Aoyama, S., J. Appl. Phys. 63, 1754 (1988).
[3] Kim, Y., Massoud, H. Z., and Fair, R. B., J. Elec. Mat. 18, 143 (1989).
[4] Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).
[5] Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).
[6] Brotherton, S. D., Gowers, J. P., Young, N. D., Clegg, J. B., and Ayres, J. R., J. Appl. Phys. 60, 3567 (1986).
[7] Wen, D. S., Smith, P., Osburn, C. M., and Rozgonyi, G. A., J. Electrochem. Soc. 136, 466 (1989).
[8] Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., Appl. Phys. Lett. 51, 1182 (1987).
[9] Ohdomari, I., Takano, K., Chikyow, T., Kawarada, H., Nakanishi, J., and Ueno, T., MRS Symp. Proc. 54, 63 (1986).
[10] Maex, K., DeKeersmaecker, R., Claeys, C., Vanhellemont, J., and Alkemade, P. F. A., in Semiconductor Silicon 1986, Huff, H., Abe, T., and Kolbesen, B. (eds.), (The Electrochemical Society, Penninglon, NJ, 1986), p. 346.
[11] Lur, W., Cheng, J. Y., Chu, C. H., Wang, M. H., Lee, T. C, Wann, Y. J., Chao, W. Y., and Chen, L. J., Nucl. Instr. Meth. B39, 297 (1989).
[12] Osburn, C. M., Brat, T., Sharma, D., Griffis, D., Corcoran, S., Lin, S., Chu, W.-K., and Parikh, N., J. Electrochem. Soc. 6, 1490 (1988).
[13] Morgan, A. E., Broadbent, E. K., Delfino, M., Coulman, B., and Sadana, D. K., J. Electrochem Soc. 134, 925 (1987).
[14] Raaijmakers, I. J. M. M., van Uzendoorn, L. J., Theunissen, A. M. L., and Kim, K. B., MRS Symp. Proc, 146, 267 (1989).
[15] Corcoran, S. F., Osburn, C. M., Parikh, N., Linton, R. W., and Griffis, D. P., J. Vac. Sci. Tech. A7, 3065 (1989).
[16] Jones, K. S., Prussin, S., and Weber, E. R., J. Appl. Phys. 62, 4114 (1987).
[17] Fahey, P., Dutton, R. W., and Hu, S. M., Appl. Phys. Lett. 44, 777 (1984).
[18] Fair, R. B., IEEE Trans. Elec. Dev. ED-35, 285 (1988).
[19] Cspregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).
[20] Van den Hove, L., Wolters, R., Maex, K., DeKeersmaecker, R., and Declerck, G., J. Vac. Sci. Tech. B4, 1358 (1986).
[21] Pico, C. A. and Lagally, M. G., J. Appl. Phys. 64, 4957 (1988).
[22] Ahn, S. T., Kennel, H. W., Plummer, J. D., and Tiller, W. A., J. Appl. Phys. 64, 4914 (1988).
[23] Moynagh, P. B., Brown, A. A., and Rosser, P. J., J. Phys. C4, 187 (1988).
[24] Jiang, H., Osburn, C. M., Smith, P., Xiao, Z. -G., Griffis, D., McGuire, G., and Rozgonyi, G. A., J. Electrochem. Soc. 139, 196 (1992).
[25] Honeycutt, J. W. and Rozgonyi, G. A., to be submitted to J. Appl. Phys.
[26] Van den Hove, L., Ph. D. Thesis, Katholieke Universiteit Leuven, Belgium (1988).
[27] Narayan, J. and Jagannadham, K., J. Appl. Phys. 62, 1694 (1987).
[28] Fahey, P. and Dutton, R. W., Appl. Phys. Lett. 52, 1092 (1988).
[29] Xiao, Z. G., Rozgonyi, G. A., Canovai, C. A., and Osburn, C. M., MRS Symp. Proc. 202, 101 (1991).
[30] Nolan, T., Beyers, R., and Sinclair, R., MRS Symp. Proc. 202, 95 (1991).
[31] Schowengerdt, F. D., Lin, T. L., Fathauer, R. W., and Grunthaner, P. J., Appl. Phys. Lett. 54, 1314 (1989).

Related content

Powered by UNSILO

Effects of Concurrent Co or Ti Silicidation on Transient Diffusion and End-of-Range Damage in Phosphorus Implanted Silicon

  • J.W. Honeycutt (a1), J. Ravi (a1) and G. A. Rozgonyi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.