Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:08:31.192Z Has data issue: false hasContentIssue false

Effects of CF4 Addition on the Growth of Amorphous CNx Films by Plasma Decomposition of CH4-N2 Gas Mixtures

Published online by Cambridge University Press:  10 February 2011

T. Inokuma
Affiliation:
Department of Electrical and Computer Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1165, Japan.
H. Matsumoto
Affiliation:
Department of Electrical and Computer Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1165, Japan.
Y. Kurata
Affiliation:
Department of Electrical and Computer Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1165, Japan.
S. Hasegawa
Affiliation:
Department of Electrical and Computer Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1165, Japan.
Get access

Abstract

Hydrogenated amorphous carbon nitride (α-CNx:H) films are deposited at 50–300°C by radio-frequency plasma decomposition of CH4-CF4-N2 gas mixtures. Effects of fluorine radicals on the deposition rate, composition, and on chemical bonding are investigated. When CF4 gas is added as partial replacement of CH4 gas, the deposition rate at 200°C steeply increases with increasing flow rate ratio RCF = [CF4]/([CH4]+[CF4]) up to ∼0.3, and then it decreases gradually. It is found that the nitrogen content, x, increases from 0.22 to 0.46 when RCF increases from 0 to 0.75. The inclusion of fluorine atoms into the films is less than 5 at%. The infrared absorption spectra shows strong enhancement of the absorption bands related to various forms of C—N bonding by the CF4 addition. It is found that the addition of CF4enhances the formation of C–N bonds in PECVD α-CNx:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, A.Y. and Cohen, M.L., Science 245, p. 841 (1989).Google Scholar
2. Liu, A.Y. and Cohen, M.L., Phys. Rev. B41, p.10727 (1990).Google Scholar
3. Chi, E.J., Shim, J.Y., Baik, H.K., Lee, S.M., Appl. Phys. Lett. 71, p. 324 (1997).Google Scholar
4. Huttel, I., Gurovic, J., Cerny, F., and Pospisil, J., Diam. Relat. Mater. 8, p.628 (1999).Google Scholar
5. Iwasaki, T., Aono, M., S. Nitta, Habuchi, H., and Nonomura, S., Diam. Relat. Mater. 8, p. 440 (1999).Google Scholar
6. Hoffman, A., Gouzman, I. and Brener, R., Appl. Phys. Lett 64, p.845 (1994).Google Scholar
7. Withrow, S.P., Williams, J.M., Prawer, S., and Barbara, D., J. Appl. Phys. 78, p. 3060 (1995).Google Scholar
8. Song, H.W., FZ. Cui, He, X.M., Li, W.Z., and Li, H.D., J. Phys. Condens. Matter. 6, p. 6125 509 (1994).Google Scholar
9. Kobayashi, S., Nozaki, S., Morisaki, H., Fukui, S., and Masaki, S., Thin Solid Films 281–282, p. 293 (1996).Google Scholar
10. Bousetta, A., Lu, M., Bensaoula, A., Schultz, A., Appl. Phys. Lett 65, p. 696 (1994).Google Scholar
11. Kim, J. H., Ahn, D.H., Kim, Y.H., and Baik, H.K., J. Appl. Phys. 82, p.658 (1997)Google Scholar
12. Zhang, M., Nakayama, Y., Miyazaki, T., and Kume, M., J. Appl. Phys 85, p. 2904 (1999).Google Scholar
13. Lim, S.F., Lee, A.T.S., Lin, J., Chua, D.H.C, Huan, C.H.A., Chem. Phys. Lett. 306, p. 53 (1999).Google Scholar
14. Li, D., Lopez, S., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol. A13, p. 1063 (1995).Google Scholar
15. Zhang, Z. J., Fan, S., Lieber, C.M., Appl. Phys. Lett. 66, p. 3582 (1995).Google Scholar
16. Bulir, J., Jelinek, M., Vorlicek, V., Zemek, J., and Perina, V., Thin Solid Films 292, p. 318 (1997).Google Scholar
17. Kaufman, J.H., metin, S. and Saperistein, D.D., Phys. Rev. B39, p. 13053 (1989).Google Scholar