Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T12:09:10.444Z Has data issue: false hasContentIssue false

Effective p+-Doping of a-Si:H and a-Sic:H Layers by Plasma Assisted Boron Diffusion

Published online by Cambridge University Press:  28 February 2011

H.-D. Mohring
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Fed. Rep. Germany
G. H. Bauer
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Fed. Rep. Germany
G. Bilger
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Fed. Rep. Germany
C. E. Nebel
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Fed. Rep. Germany
Get access

Abstract

Doping of a-Si:H and a-SiC:H has been performed by plasma enhanced boron migration from thin (5–30 nm) Si0.2B0.8 layers on top of the substrate into the growing i-film. Transport coefficients for this plasma assisted diffusion (PAD) evaluated from SIMS profiles (D* = 10−15 … 10 cm2/s for a-Si:H, 10−15 cm2/s for a:SiC:H) by far exceed those for thermal diffusion after film deposition (10−21 cm2/s). Boron profiles are strongly governed by deposition parameters like substrate temperature, types and energies of radicals growing the film. Boron migration can be modelled assuming particle extraction from the network to the surface by bombardment of ions and atoms and high surface mobility of BHx radicals as a result from interaction with the plasma. Temperature dependent dark conductivity measurements show doping efficiencies comparable to B2H6 gas phase doping, but leaving plasma parameters optimized for i-film Leposition unchanged. Thin a-SiC:H layers are effectively p+-doped without affecting transmission, as no layer is optically detectable after PAD.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

/1/ Knights, J.C., J. Noncryst. Solids 35&36, 159 (1980)Google Scholar
/2/ Demond, F.J. et al. , J. Physique 42, C4779 (1981)Google Scholar
/3/ Schiff, E.A. et al. , Appl. Phys. Lett. 38, 92 (1981)CrossRefGoogle Scholar
/4/ Berger, J.M. et al. , Solar En. Mat. 9, 301 (1983)CrossRefGoogle Scholar
/5/ Lim, K.S. et al. , J. Appl. Phys. 56, 538 (1984)Google Scholar
/6/ Sichanugrist, P. et al. , J. Appl. Phys. 55, 1155 (1984)CrossRefGoogle Scholar
/7/ Onishi, M. et al. , Proc. 6 EC Phot. Sol. En. Conf. 1985 Reidel, D., Dordrecht (NL) 1985, p. 677Google Scholar
/8/ Bilger, G. et al. , J. Noncryst. Solids 77&78, 503 (1985)CrossRefGoogle Scholar
/9/ Carlson, D.E., Magee, C.W., Appl. Phys. Lett. 33, 81 (1978)CrossRefGoogle Scholar
/10/ Spear, P.G., LeComber, P.G., Phil. Mag 33, 935 (1976)CrossRefGoogle Scholar
/11/ Beyer, W. et al. , J. Noncryst. Solids 77&78, 857 (1985)CrossRefGoogle Scholar
/12/ Bauer, G.H. et al. , Conf. Rec. 18 IEEE PVSC, IEEE New York to be publ.Google Scholar
/13/ Sigmund, P., in Sputtering by Ion Bomb., Top. Appl. Phys. 47, Springer, Berlin 1981 Google Scholar
/14/ AIP Handbook of Physics ed. Gray, D.E., Mc Graw Hill, New York 1972 Google Scholar
/15/ CRC Handbook Chem. and Phys., 63 ed., CRC Press, Boca Raton 1982 Google Scholar