Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T19:56:34.634Z Has data issue: false hasContentIssue false

Effect of the Temperature of Annealing on the Performance of Fluorene and Bithiophene Copolymer in Bilayer Solar Cells

Published online by Cambridge University Press:  30 March 2012

Natasha A. D. Yamamoto*
Affiliation:
Laboratório de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Daniel C. Silva
Affiliation:
Laboratório de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Isabel L. Grova
Affiliation:
Laboratório de Polímeros Paulo Scarpa, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Andreia G. Macedo
Affiliation:
Laboratório de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Cleber F. N. Marchiori
Affiliation:
Laboratório de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Marlus Koehler
Affiliation:
Laboratório de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Leni Akcelrud
Affiliation:
Laboratório de Polímeros Paulo Scarpa, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Lucimara S. Roman
Affiliation:
Laboratório de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
*
*Corresponding author: Natasha A. D. Yamamoto nady04@fisica.ufpr.br
Get access

Abstract

We have investigated the effect of temperature annealing on bilayer heterojunction solar cells based on poly[9,9’-hexyl-fluorene-alt-bithiophene] as active layer. Film morphology for different temperature annealing was probed by atomic force microscopy (AFM) and the values of roughness range from 0.59 up to 2.15 nm. The best photovoltaic performance was found for devices with active layer annealed at 200°C with power conversion efficiency (η) of 2.8 % while devices without annealing presented only 0.4%. This performance enhancement is attributed to the reduction of traps and increased hole mobility after the thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zhao, B., Liu, D., Peng, Li, Li, H., Shen, P., Xiang, N., Liu, Y., Tan, S., Eur. Polymer Journal 45, 2079 (2009)Google Scholar
[2] Schulz, G. L., Chen, X., Holdcroft, S., Appl. Phys. Lett. 94, 023302 (2009).Google Scholar
[3] Huang, J. H., Yang, C. Y., Ho, Z.Y., Kekuda, D., Wub, M. C., Chien, F. C., Chen, P., Chu, C. W., Ho, K. C., Org. Electron. 10, 27 (2009).Google Scholar
[4] Huang, J. H., Li, K. C., Kekuda, D., Padhy, H. H., Lin, H. C., Ho, K. C., Chu, C. W., Solar Energy Materials & Solar Cells 94, 22 (2010).Google Scholar
[5] Kekuda, D., Huang, J. H., Ho, K. C., Chu, C. W., J. Phys. Chem. C 114, 2764 (2010).Google Scholar
[6] Macedo, A. G., Marchiori, C. F. N., Grova, I. R., Akcelrud, L., Koehler, M., Roman, L. S., Appl. Phys. Lett. 98, 253501 (2011).Google Scholar
[7] Bjorstrom, C. M., Magnusso, K. O., Moons, E., Synth. Met. 152, 109 (2005).Google Scholar
[8] Zhao, D., Tang, W., Ke, L., Tan, S. T., Sun, X. W., ACS Appl. Mater. Interfaces 2, 829 (2010)Google Scholar
[9] Silva, D. C., Yamamoto, N.A. D., Macedo, A. G., Micaroni, L., Mello, R. M. Q., and Roman, L. S., submitted to Advanced Energy Material (2012).Google Scholar
[10] Assaka, A. M., Rodrigues, P. C., de Oliveira, A. R. M., Ding, L., Hu, B., Karasz, F. E., Akcelrud, L., Polymer 45, 7071 (2004).Google Scholar
[11] Tang, W., Ke, L., Tan, L., Lin, T., Kietzke, T., Chen, Z., Macromolecules 40, 6164 (2007).Google Scholar
[12] Qiao, R., Roberts, A. P., Mount, A. S., Klaine, S. J., Ke, P. C., Nano Lett. 7, 614 (2007).Google Scholar
[13] Zeng, L., Yan, F., Wei, S. K. H., Culligan, S. W., Chen, S. H., Adv. Funct. Mater. 19, 1978 (2009).Google Scholar
[14] Roman, L. S., Valaski, R., Canestraro, C. D., Persson, C., Pepe, I., Silva, E. F., Silva, A., Appl. Surf. Sci. 252, 5361 (2006).Google Scholar
[15] Lamb, D. R., Electrical Conduction in Thin Insulating Films, Methuen and Co LTD, London (1967).Google Scholar