Skip to main content Accessibility help
×
Home

Effect of the Quantum Size Effect on the Performance of Solar Cells with a Silicon Nanowire Array Embedded in SiO2

  • Yasuyoshi Kurokawa (a1) (a2), Shinya Kato (a1), Yuya Watanabe (a1), Akira Yamada (a1) (a3), Makoto Konagai (a1) (a3), Yoshimi Ohta (a4), Yusuke Niwa (a4) and Masaki Hirota (a4)...

Abstract

The electrical characteristics of silicon nanowire (SiNW) solar cells with p-type hydrogenated amorphous silicon oxide (Eg =1.9 eV)/n-type SiNWs embedded in SiO2/n-type hydrogenated amorphous silicon (Eg =1.7 eV) structure have been investigated using a two-dimensional device simulator with taking the quantum size effects into account. The average bandgap of a SiNW embedded in SiO2 increased from 1.15 eV to 2.71 eV with decreasing the diameter from 10 nm to 1 nm due to the quantum size effect. It should be noted that under the sunlight with AM1.5G the open-circuit voltage (Voc ) of SiNW solar cells also increased to 1.54 V with decreasing the diameter of the SiNWs to 1 nm. This result suggests that it is possible to enhance the Voc by the quantum size effect and a SiNW is a promising material for the all silicon tandem solar cells.

Copyright

References

Hide All
1. Yamada, S., Kurokawa, Y., Miyajima, S., Yamada, A., and Konagai, M., Proc. 35th IEEE Photovoltaic Specialist Conf. Honolulu, Hawaii, USA, 2010, p. 766.
2. Kurokawa, Y., Tomita, S., Miyajima, S., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 46, L833 (2007).
3. Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., Appl. Phys. Lett. 91, 233117 (2007).
4. Sivakov, V., Andrä, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S. H., Nano Lett. 9, 1549 (2009).
5. Zhang, M. L., Peng, K. Q., Fan, X., Jie, J. S., Zhang, R. Q., Lee, S. T., and Wong, N. B., J. Phys. Chem. C 112, 4444 (2008).
6. Green, M. A., Tech. dig. 15th Int. Photovoltaic Science & Engineering Conf. Shanghai, China, 2005, p. 7.
7. Shockley, W. and Queisser, H. J., J. Appl. Phys. 32, 510 (1961).
8. Kurstjens, R., Vos, I., Dross, F., Poortmans, J., and Mertens, R., J. Electrochemical Society 159, H300 (2012).
9. Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn. J. Appl. Phys. 51, 02BP09 (2012).
10. Hu, L. and Chen, G., Nano Lett. 7, 3249 (2007).
11. King, R. R., Sinton, R. A., Swanson, R. W., and Ciszek, T. F., Proc. IEEE Photovoltaic Specialist Conf., New Orleans, 1987, p. 1168.
12. Zhao, J. H., Wang, A. H., Green, M. A., and Ferrazza, F., Appl. Phys. Lett. 73, 1991 (1998).
13. Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Tech. dig. 21st Int. Photovoltaic Science and Engineering Conf. Fukuoka, 2011, p. 5C-5O-02.
14. Roulston, D. J., Arora, N. D., and Chamberlain, S. G., IEEE Trans. Electron Devices 29, 284 (1982).
15. Law, M. E., Solley, E., Liang, M., and Burk, D. E., IEEE Trans. Electron Devices 12, 401 (1991).
16. Fossum, J. G. and Lee, D. S., Solid-State Electron 25, 741 (1982).
17. Bohm, D., Phys. Rev. 85, 180 (1952).
18. Bohm, D., Phys. Rev. 85, 166 (1952).
19. Iannaccone, G. C. G., Fiori, G., Proc. Int. Conf. Simulation of Semiconductor Processes and Devices Munich, Germany, 2004, p. 275.
20. Delle Site, L., Physica B 349, 218 (2004).
21. Christopher Urban, J. E. M., Mukund, P. R., Semicond. Sci. Technol. 25, 115011 (2010).
22. Renato Giacomini, J. A. M., J. Electrochemical Society 155, H213 (2008).
23. Kurokawa, Y., Yamada, S., and Konagai, M., Jpn. J. Appl. Phys. To be pubished (2012).
24. Neophytou, N., Paul, A., Lundstrom, M. S., and Klimeck, G., IEEE Trans. Electron Devices 55, 1286 (2008).
25. Luisier, M., Schenk, A., Fichtner, W., and Klimeck, G., Phys. Rev. B 74, 205323 (2006).
26. Gnani, E., Reggiani, S., Gnudi, A., Parruccini, P., Colle, R., Rudan, M., and Baccarani, G., IEEE Trans. Electron Devices 54, 2243 (2007).
27. Aoyama, T., Sugii, T., and Ito, T., Appl. Surf. Sci. 4142, 584 (1989).
28. Miyajima, S., Irikawa, J., Yamada, A., and Konagai, M., J. Appl. Phys. 109, 054507 (2011).
29. Mickevicius, R. and Zhao, J. H., J. Appl. Phys. 83, 3161 (1998).
30. Miyajima, S., Sawamura, M., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 46, L693 (2007).
31. Miyajima, S., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 46, 1415 (2007).
32. Miyajima, S., Irikawa, J., Yamada, A., and Konagai, M., Appl. Phys. Lett. 97, 023504 (2010).

Keywords

Effect of the Quantum Size Effect on the Performance of Solar Cells with a Silicon Nanowire Array Embedded in SiO2

  • Yasuyoshi Kurokawa (a1) (a2), Shinya Kato (a1), Yuya Watanabe (a1), Akira Yamada (a1) (a3), Makoto Konagai (a1) (a3), Yoshimi Ohta (a4), Yusuke Niwa (a4) and Masaki Hirota (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed