Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T04:03:01.039Z Has data issue: false hasContentIssue false

Effect of the Crystallinity of V6O13 Films on the Electrochemical Behavior of Lithium Microbatteries

Published online by Cambridge University Press:  16 February 2011

A. Gorenstein
Affiliation:
Laboratoire de Physique des Solides, associé au CNRS, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France
A. Khelfa
Affiliation:
Laboratoire de Physique des Solides, associé au CNRS, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France
J.P. Guesdon
Affiliation:
Laboratoire de Physique des Solides, associé au CNRS, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France
C. Julien*
Affiliation:
Laboratoire de Physique des Solides, associé au CNRS, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France
*
Corresponding author
Get access

Abstract

Electrochemical characteristics of Li/V6O13 microbatteries are evaluated in relation with the crystallinity and morphology of thin-film cathodes. Thin films of V6O13 were prepared using the flash evaporation technique. Amorphous and polycrystalline samples were characterized by X-Ray diffraction, Raman spectroscopy and conductivity measurements. The effect of either deposition parameters or post-deposition treatment are presented in this work. Thermodynamics and kinetics of lithium insertion were studied in V6O13 thin films obtained with various growth conditions. Discharge curves present different types of behavior depending on the cathode morphology. Diffusion coefficients and enhancement factors were calculated as a function of the degree of lithium intercalation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Permanent address: Physics Institute, Universidade Estadual de Campinas, CP6165, Campinas SP Brazil

References

1. Julien, C. and Nazri, G.A., Solid State Batteries: Materials Design and Optimization (Kluwer, Boston, 1994).Google Scholar
2. Fujita, Y., Miyazaki, K. and Tatsuyama, C., Jpn. J. Appl. Phys. 24, 1082 (1985).Google Scholar
3. Julien, C., Khelfa, A., Guesdon, J.P. and Gorenstein, A., Appl. Phys. A 78, 173 (1994).Google Scholar
4. Murphy, D.W. and Christian, P.A., Science 205, 651 (1979).Google Scholar
5. Murphy, D.W., Christian, P.A., DiSalvo, F.J. and Carides, J.N., J. Electrochem. Soc. 126, 497 (1979).Google Scholar
6. West, K., Zachau-Christiansen, B. and Jacobsen, T., Electrochim. Acta 28, 1829 (1983).Google Scholar
7. Aeibi, F., Helv. Chim. Acta 31, 8 (1948).Google Scholar
8. Wilhelmi, K.A., Waltersson, K. and Kihlborg, L., Acta Chem. Scand. 25, 2675 (1971).Google Scholar
9. Dernier, P.D., Mat. Res. Bull. 9 (1974) 955.Google Scholar
10. Murawski, L., Gledel, C., Sanchez, C., Livage, J. and Audiere, J.P., J. Non-Cryst. Solids 89, 98 (1987).Google Scholar
11. Julien, C., Khelfa, A., Benramdane, N., Guesdon, J.P., Dwzonkowski, P., Samaras, I. and Balkanski, M., Mater. Sci. Eng. B 23, 105 (1994).Google Scholar
12. Beattie, I.R. and Gilson, T.R., J. Chem. Soc. A 2322 (1969).Google Scholar
13. Abello, L., Husson, E., Repelin, Y. and Lucazeau, G., Spectrochim. Acta A 39, 641 (1983).Google Scholar
14. Hardcastle, F.D. and Wachs, I.E., J. Phys. Chem. 95, 5031 (1991).Google Scholar
15. Hove, W. Van, Clauws, P. and Vennik, J., Solid State Commun. 23, 11 (1980).Google Scholar
16. Clauws, P. and Vennik, J., Phys. Status Solidi (b) 69, 491 (1975).Google Scholar
17. Sanchez, C., Livage, J. and Lucazeau, G., J. Raman Spectr. 12, 68 (1982).Google Scholar
18. Julien, C., El-Farh, L., Balkanski, M., Nazri, G.A. and Hussain, O.M., Appl. Surf. Sci. 65-66, 325 (1993).Google Scholar
19. Bose, M., Phys. Rev. B 46, 7542 (1992).Google Scholar
20. Kachi, S., Takada, T. and Kosuge, K., J. Phys. Soc. Japan 18, 1839 (1963).Google Scholar
21. Okinaka, H., Nagasawa, K., Kosuge, K., Bando, Y. and Kachi, S., J. Phys. Soc. Jpn 29, 245 (1970).Google Scholar
22. Sanchez, C., Livage, J., Audiere, J.P. and Madi, A., J. Non-Cryst. Solids 65, 285 (1984).Google Scholar
23. Abo-EI-Soud, A.M., Mansour, B. and Soliman, L.I., Thin Solid Films 247, 140 (1994).Google Scholar
24. West, K., Zachau-Christiansen, B., Jacobsen, T. and Atlung, S., J. Power Sources 14, 235 (1985).Google Scholar
25. Julien, C., Samaras, I., Tsakiri, M., Dzwonkowski, P. and Balkanski, M., Mater. Sci. Eng. B 3, 25 (1989).Google Scholar
26. Liquan, C. and Schoonman, J., Solid State Ionics 67, 17 (1994).Google Scholar
27. Pereira-Ramos, J.P., Baffier, N. and Pistoia, G., in Lithium Batteries, New Materials, Development and Perspectives, edited by Pistoia, G. (Elsevier, Amsterdam, 1994), p. 281.Google Scholar