Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T02:42:45.986Z Has data issue: false hasContentIssue false

Effect of Surface and Grain-Boundary Diffusion on Interconnect Reliability

Published online by Cambridge University Press:  15 February 2011

L. M. Klinger
Affiliation:
The Technion, Haifa, Israel
E. E. Glickman
Affiliation:
The Hebrew University, Jerusalem, Israel
V. E. Fradkov
Affiliation:
Rensselaer Polytechnic Institute, Troy, New York, USA
W. W. Mullins
Affiliation:
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
C. L. Bauer
Affiliation:
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Get access

Abstract

The effect of surface and grain-boundary diffusion on interconnect reliability is addressed by extending the theory of thermal grooving to arbitrary grain-boundary flux. For a periodic array of grain boundaries, three regimes are identified: (1) equilibrium, (2) global steady state, and (3) local steady state. These regimes govern the stability of polycrystalline materials subjected to large electric (electromigration) or mechanical (stress voiding) fields, especially in thin films where grain size approximates film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mullins, W. W., J. Appl. Phys. 28, 333 (1957).Google Scholar
2 Klinger, L. M., Glickman, E. E., Fradkov, V. E., Mullins, W. W. and Bauer, C. L., submitted to J. Appl. Phys. (February 1995).Google Scholar
3 Hackney, S. A., Scripta Met. 22, 1273 (1988).Google Scholar
4 Thouless, M. D., Acta Met. 41, 1057 (1993).Google Scholar
5 Chuang, T.-J. and Rice, J. R., Acta Met. 21, 1625 (1973).Google Scholar
6 Suo, Z., Wang, W. and Yang, M., Appl. Phys. Lett. 64, 1944 (1994).Google Scholar
7 Glickman, E. E. and Klinger, L., in preparation.Google Scholar
8 Rosenberg, R. and Ohring, M., J. Appl. Phys. 42, 5671 (1971).Google Scholar
9 Ohring, M., J. Appl. Phys. 42, 2653 (1971).Google Scholar
10 Blech, I. A. and Herring, C., Appl. Phys. Lett. 29, 131 (1976).Google Scholar
11 Bauer, C. L. and Mullins, W. W., Appl. Phys. Lett. 61, 2987 (1992).Google Scholar
12 Sanchez, J. E., Morris, J. W. and Lloyd, J. R., J. Metals, September 1990, p. 41.Google Scholar
13 Sanchez, J. E., McKnelly, L. T. and Morris, J. W., J. Elect. Mat. 19, 1213 (1991).Google Scholar
14 Ericson, F., Kristensen, N. and J. Å. Schweitz, , J. Vac. Sci. Tech. B9, 58 (1991).Google Scholar
15 Kuo, T., Choudhury, R. and Hata, W., Mat. Res. Soc. Symp. Proc. 309, 149 (1993).Google Scholar
16 Scherge, M., Bauer, C. L. and Mullins, W. W., Mat. Res. Soc. Symp. Proc. 338, 341 (1994).Google Scholar
17 Scherge, M., Bauer, C. L. and Mullins, W. W., Acta metall. mater., in press.Google Scholar
18 Blech, I. A., J Appl. Phys., 42, 1203 (1976).Google Scholar