Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-19T02:41:40.253Z Has data issue: false hasContentIssue false

Effect of Stoichiometry on Defect Distribution in Cubic GaN Grown on GaAs by Plasma-Assisted MBE

Published online by Cambridge University Press:  10 February 2011

S. Ruvimov
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley 94720, CA
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley 94720, CA
J. Washburn
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley 94720, CA
T. J. Drummond
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. Hafish
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S. R. Lee
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

High resolution electron microscopy has been applied to characterize the structure of β-GaN epilayers grown on (001) GaAs substrates by plasma-assisted molecular-beam-epitaxy. The rf plasma source was used to promote chemically active nitrogen. The layer quality was shown to depend on growth conditions (Ga flux and N2 flow for fixed rf power). The best quality of GaN layers was achieved by “stoichiometric” growth; Ga-rich layers contain a certain amount of the wurtzite phase. GaN layers contain a high density of stacking faults which drastically decreases toward the GaN surface. Stacking faults are anisotropically distributed in the GaN layer; the majority intersect the interface along lines parallel to the “major flat” of the GaAs substrate. This correlates well with the observed anisotropy in the intensity distribution of x-ray reflexions. Formation of stacking faults are often associated with atomic steps at the GaN-GaAs interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Mohammad, S. N., Salvador, A. A., and Morkog, H., Proceedings of the IEEE 83, 1306 (1995).Google Scholar
3. Jenkins, L. C., Cheng, T. S., Foxon, C. T., Hooper, S. E., Orton, J. W., Novikov, S. V., and Tret’yakov, V. V., J. Vac. Sci. Technol. B 13, 1585 (1995).Google Scholar
4. Liu, H., Frenkel, A. C., Kim, J. G., and Park, R. M., J. Appl. Phys. 74,6124 (1993).Google Scholar
5. Moustakas, T. D., Lei, T., and Molnar, R. J., Physica B 185, 36 (1993).Google Scholar
6. Powell, R. C., Lee, N.-E., Kim, Y.-W., and Greene, J. E., J. Appl. Phys. 73, 189 (1993).Google Scholar
7. Kasu, M., Makimoto, T., and Kobayashi, N., Appl. Phys. Lett. 68, 955 (1996).Google Scholar
8. Yang, H., Brandt, O., Wassermeier, M., Behrend, J., Schönherr, H. P., and Ploog, K. H., Appl. Phys. Lett. 68, 244 (1996).Google Scholar
9. Neugebauer, J., and van de Walle, C. G., In Fitzgerald, E. A., Hoyt, J., Cheng, K.-Y., and Bean, J. (Eds.), Strained Layer Epitaxy - Materials, Devices, Processing and Device Applications, 379 (pp. 3). San Francisco, California, USA: Materials Research Society (1995).Google Scholar
10. Molnar, R. J., and Moustakas, T. D., J. Appl. Phys. 76, 4587 (1994).Google Scholar
11. Nagahara, M., Miyoshi, S., Yaguchi, H., Onabe, K., Shiraki, Y., and Ito, R., Journal of Crystal Growth 145, 197 (1994).Google Scholar
12. Chandrasekhar, D., Smith, D. J., Strite, S., Lin, M. E., and Morkog, H., Journal of Crystal Growth 152, 135 (1995).Google Scholar
13. Yang, H., Brandt, O., and Ploog, K., phys. stat. sol. (b) 194, 109 (1996).Google Scholar
14. Okumura, H., Ohta, K., Nagatomo, T., and Yoshida, S., Journal of Crystal Growth 164, 149 (1996)Google Scholar
15. Cheng, T. S., Jenkins, L. C., Hooper, S. E., Foxon, C. T., Orton, J. W., and Lacklison, D.E., Appl. Phys. Lett. 66, 1509 (1995).Google Scholar
16. Foxon, C. T., Cheng, T. S., Hooper, S. E., Jenkins, L. C., Orton, J. W., Lacklison, D.E., Novikov, S. V., Popova, T.B., and Tret’yakov, V. V., J. Vac. Sci. Technol. B 14, 2346 (1996).Google Scholar