Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T04:16:41.375Z Has data issue: false hasContentIssue false

Effect of Processing Variables on The Magnetic Field Orientation of Liquid Crystalline Thermosets

Published online by Cambridge University Press:  10 February 2011

Elliot P. Douglas
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

We have investigated the effect of various processing variables on the magnetic field orientation of a liquid crystalline epoxy. By using a modified fractional factorial design, we created an empirical model which can be used to predict the degree of orientation as a function of these variables. The model predicts the correct qualitative trends, namely that orientation increases with increasing magnetic field strength, increases with increasing time in the field, and decreases with increasing B-staging. The model also reveals some surprising effects of B-staging on the degree of orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Plate, N. A., Talroze, R. V., and Shibaev, V. P., Makromol. Chem., Macromol. Symp. 12, p. 203 (1987).Google Scholar
2 Tal'roze, R.V. and Plate, N. A. in Liquid-Crystal Polymers, edited by Plate, N. A., Plenum Press, New York, 1993, p. 303.Google Scholar
3 Maret, G. in Physical Phenomena at High Magnetic Fields, edited by Manousakis, E., Schlottman, P., Kumar, P., Bedell, K. S., and Mueller, F. M., Addison-Wesley Publishing Company, Redwood City, CA, 1991, p. 458.Google Scholar
4 Moore, R. C. and Denn, M. M. in High Modulus Polymers, Approaches to Design and Development, edited by Zachariades, A. E. and Porter, R. S., Marcel Dekker, New York, 1990, p. 169.Google Scholar
5 Roche, P. and Zhao, Y., Macromolecules 28, p. 2819 (1995).Google Scholar
6 Martin, C., Kramer, H., Johner, C., Weyerich, B., Biegel, J., Deike, R., Hagenbuchle, M., and Weber, R., Macromolecules 28, p. 3175 (1995).Google Scholar
7 Hoyle, C. E., Watanabe, T., Brister, E., and Whitehead, J., Polym. Prep. 34 (1), 703 (1993).Google Scholar
8 Jahromi, S., Macromolecules 27, p. 2804 (1994).Google Scholar
9 Hoyle, C. E., Watanabe, T., and Whitehead, J. B., Macromolecules 27, p. 6581 (1994).Google Scholar
10 Jahromi, S., W. Kuipers, A. G., Norde, B., and Mijs, W. J., Macromolecules 28, p. 2201 (1995).Google Scholar
11 Barclay, G. G., McNamee, S. G., Ober, C. K., Papathomas, K. I., and Wang, D. W., J. Polyrn. Sci., Part A: Polym. Chem. 30, p. 1845 (1992).Google Scholar
12 Barclay, G. G., Ober, C. K., Papathomas, K. I., and Wang, D. W., Macromolecules 25, p. 2947 (1992).Google Scholar
13 Ober, C. K. and Barclay, G. G., Mat. Res. Soc. Symp. Proc. 227, p. 281 (1991).Google Scholar
14 Gerzeski, R. H., Int. SAMPE Symp. 36, p. 1368 (1991).Google Scholar
15 Benicewicz, B. C., Smith, M. E., Earl, J. D., Priester, R. D. Jr., Setz, S. M., Duran, R. S., and Douglas, E. P., Macromolecules 31, p. 4730 (1998).Google Scholar
16 Moore, J. S. and Stupp, S. I., Macromolecules 20, p. 282 (1987).Google Scholar