Skip to main content Accessibility help

The Effect of Post-Growth Anneals on Nitroxide Films

  • Peter J. Wright (a1), Ahmad Kermani (a2) and Krishna C. Saraswat (a1)


A new technique of post-oxidation annealing has been introduced to improve the properties and long term reliability of ultrathin (<100 Å) MOS gate dielectrics. In this technique, after oxidation, nitridation is done in NH3 followed by a light reoxidation in O2 and then an inert anneal in Ar or N2. Using this technique both optimum performance as well as reliability can be obtained without sacrificing either. NH3 anneal of SiO2 improved the hot electron immunity, but degraded the interface quality. Good properties could be obtained by a strong reoxidation of the nitrided films, however, at the expense of a substantial increase in the film thickness. Nitrogen and argon ambients were found to be equally effective at improving film properties. By annealing the film in an inert ambient following reoxidation of the nitroxide, fixed charge can be further decreased with little oxide grown, electron mobility in NMOS FETs increases further, and the hot electron lifetime is much longer than that of the starting oxide.



Hide All
[1] Ito, T., Arakawa, H., Nozaki, T., and Ishikawa, H., J. Electrochemical Soc., 127(10), 2248 (1980).
[2] Hori, T. and Iwasaki, H.I., Proc. of the 1987 International Electron Devices Meeting, Washington, D.C., 570 (1987).
[3] Kusaka, T., Hiraiwa, A., and Mukai, K., J. Electrochemical Soc., 135(1), 166172 (1988).
[4] Shih, D. K. et al. Appl. Phys. Lett., 52(20), 1698 (1988).
[5] Hori, T., Iwaskai, H., and Tsuji, K., IEEE Trans. on Electron Devices, ED–35(7), 904 (1988).
[6] Hori, T., Iwasaki, H., Naito, Y., and Esaki, H., IEEE Trans. on Electron Devices, ED–34(11), 2238 (1987).
[7] Schmidt, M. A., Terry, F. L. Jr., Mathur, B. P., and Senturia, S. D., IEEE Trans. on Electron Devices, ED–35(10), 1627 (1988).
[8] Hori, T., Iwasaki, H., and Tsuji, K., IEEE Trans. on Electron Devices, 36(2), 340 (1989).
[9] Lai, S. K., Dong, D. W., and Hartstein, A., J. Electrochemical Soc., 129(9), 2042 (1982).
[10] Nissan-Cohen, Y. and Gorczyca, T., IEEE Electron Device Letts., 9(6), 287 (1988).
[11] Kuiper, A. E. T. et al. J. Appl. Phys., 59(8), 2765 (1986).
[12] Naito, Y., Hori, T., Iwasaki, H., and Esaki, H., J. Vac. Sci. Technol. B., 5(3), 633 (1987).
[13] Deal, B. E., J. Electrochemical Soc., 121(6), 198C (1974).
[14] Jayaraman, R., Yang, W., and Sodini, C. G., Proc. of the 1986 International Electron Devices Meeting, Los Angelos, CA, 668 (1986).
[15] Lai, S. K., Lee, J., and Dham, V. K., Proc. of the 1983 International Electron Devices Meeting, Washington, DC, 190 (1983).
[16] Shih, D. K., Kwong, D. L., and Lee, S., 1988 Device Research Conference, Santa Barbara, CA, (1988).
[17] Wong, S. S., Kwan, S. H., Grinolds, H. R., Oldham, W. G., Proc. Symp. Silicon Nitride Thin Insulating Films, editors Kapoor, V. J. and Stein, H. J., Electrochemical Society, (1983).
[18] Yankova, A., Thanh, L. D., and Balk, P., Solid-State Electronics, 30(9), 939 (1987).
[19] Moslehi, M. M. and Saraswat, K. C., IEEE Trans. on Electron Devices, ED–32(2), 106 (1985).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed