Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T10:09:29.077Z Has data issue: false hasContentIssue false

The effect of periodic silane burst on the properties of GaN on Si (111) substrates

Published online by Cambridge University Press:  01 February 2011

K. Y. Zang
Affiliation:
Singapore-MIT Alliance, E4–04–10, NUS, 4 Engineering Drive 3, 117576, Singapore
S. J. Chua
Affiliation:
Singapore-MIT Alliance, E4–04–10, NUS, 4 Engineering Drive 3, 117576, Singapore Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
C. V. Thompson
Affiliation:
Singapore-MIT Alliance, E4–04–10, NUS, 4 Engineering Drive 3, 117576, Singapore Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
L. S. Wang
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
S. Tripathy
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
S. Y. Chow
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
Get access

Abstract

The periodic silane burst technique was employed during metalorganic chemical vapor deposition of epitaxial GaN on AlN buffer layers grown on Si (111). Periodic silicon delta doping during growth of both the AlN and GaN layers led to growth of GaN films with decreased tensile stresses and decreased threading dislocation densities, as well as films with improved quality as indicated by x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. The possible mechanism of the reduction of tensile stress and the dislocation density is discussed in the paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys. 36, L1059 (1997).Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Mat-sushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 36, L1568 (1997)Google Scholar
[3] Krost, A. and Dadgar, A., Mater. Sci. Eng. B93, 77 (2002)Google Scholar
[4] Nakamura, S., Science 281, 956 (1998)Google Scholar
[5] Sasaoka, S., Sunakawa, H., Kimura, A., Nido, M., Usui, A. and Sakai, A., J. Cryst. Growth 189/190, 61 (1998)Google Scholar
[6] Osinsky, A., Gangopadhyay, S., Gaska, r., Williams, B., Khan, M. A., Kuksenkov, D. and Temkin, H., Appl. Phys. Lett. 71, 2334 (1997)Google Scholar
[7] Blasing, J., Reiher, A., Dadgar, A., Diez, A., and Krost, A., Appl. Phys. Lett. 81, 2722 (2002)Google Scholar
[8] Dadgar, A., Poschenrieder, M., Blasing, J., Fehse, K., Diez, A. and Krost, A., Appl. Phys. Lett. 80, 3670 (2002)Google Scholar
[9] Dadgar, A., Blasing, J., Diez, A., Alam, A., Heuken, M., and Krost, A., Jpn. J. Appl. Phys. 39, L1183 (2000)Google Scholar
[10] Lahreche, H., Vennegues, P., Beaumont, B. and Gibart, P., J. Cryst. Growth 205, 245 (1999)Google Scholar
[11] Contreras, O., Ponce, F. A., Christen, J., Dadgar, A. and Krost, A., Appl. Phys. Lett. 81, 4712 (2002)Google Scholar
[12] Hageman, P.R., Haffouz, S., Kirilyuk, V., Grzegorczyk, A. and Larsen, P.K., Phys. Stat. Sol. (a) 188, 523 (2001)Google Scholar
[13] Dadgar, A., Poschenrieder, M., Reiher, A., blasing, J., Christen, J., Drtschil, A. and Finger, T., Appl. Phys. Lett. 82, 28 (2003)Google Scholar
[14] Tripathy, , Chua, S. J., Chen, P. and Miao, Z. L., J. Appl. Phys. 92, 3503 (2002)Google Scholar