Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-30T23:00:30.040Z Has data issue: false hasContentIssue false

The Effect of Oxygen on the Thermal Stability of Si1−xGex Strained Layers Grown by Limited Reaction Processing

Published online by Cambridge University Press:  22 February 2011

D. B. Noble
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
J. L. Hoyt
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
P. Kuo
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
W. D. Nix
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
J. F. Gibbons
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
S. S. Laderman
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
J. E. Turner
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
S. J. Rosner
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
M. P. Scott
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA; Hewlett-Packard Company, Palo Alto, CA
Get access

Abstract

Si1−xGex layers containing 2×1020 oxygen atoms/cm3 exhibit an enhancement in thermal stability when compared to similar films (comparable Ge content and thickness) with 2 orders of magnitude less oxygen. X-ray measurements of the lattice constants in the strained films indicate that the oxygen does not substantially change the amount of strain in the layers. A prediction of the effect of oxygen based on solid solution strengthening theory is shown to be consistent with experimental annealing results. In addition, experimental measurements of slower misfit dislocation velocities in the layers with high oxygen content compared to those measured in films with low oxygen content, support the idea of solid solution strengthening. It is therefore likely that oxygen impedes the kinetics of dislocation formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M., Gibbons, J. F., Scott, M. P., Laderman, S. S., Rosner, S. J., Nauka, K., Tumer, J. E., and Kamins, T. I., Thin Solid Films 184, 93, (1990).Google Scholar
2. Scott, M. P., Laderman, S. S., Kamins, T. I., Rosner, S. J., Nauka, K., Noble, D. B., Hoyt, J. L., King, C. A., Gronet, C. M., and Gibbons, J. F., Thin Films: Stresses and Mechanical Properties, edited by Nix, W. D., Bravman, J. C., Barnett, D. M., and Smith, D. M., (Materials Research Society, Pittsburgh).Google Scholar
3. Kamins, T. I., Nauka, K., Kruger, J. B., Hoyt, J. L., King, G. A., Noble, D. B., Gronet, C. M., and Gibbons, J. F., IEEE Electron Dev. Lett 10, 503, (1989).CrossRefGoogle Scholar
4. Hoyt, J. L., Noble, D. B., Ghani, T., King, C. A., Gibbons, J. F., Scott, M. P., Laderman, S. S., Nauka, K., Tumer, J. E., and Kamins, T. I., International Conference for Electronic Materials 1990 Proceedings, (Materials Research Society, Pittsburgh).Google Scholar
5. Noble, D. B., Hoyt, J. L., Nix, W. D., Gibbons, J. F., Laderman, S. S., Turner, J. E. and Scott, M. P., Appl. Phys. Lett. 58 (14), 1536, (1991).Google Scholar
6. Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).CrossRefGoogle Scholar
7. Hull, R. and Bean, J. C., Werder, D. J. and Leibenguth, R. E., Appl. Phys. Lett., 52, 1605, (1988).Google Scholar
8. NiX, W. D., Metall. Trans. A 20A, 2217 (1989).Google Scholar
9. Windisch, D. and Becker, P., Phys. Status. Solidi A 118, 379, (1990).CrossRefGoogle Scholar
10. King, H. W., J. Mater. Sci. 1 79 (1966).CrossRefGoogle Scholar
11. Alexander, H. and Haasen, P., Solid State Physics 22, 27, (1968).Google Scholar
12. Hull, R. et al. To be published in J. Appl. Phys. (1991).Google Scholar