Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T09:35:51.948Z Has data issue: false hasContentIssue false

Effect of Off-Stoichiometry on the Deformation Behavior of Ni3AI Binary Polycrystals

Published online by Cambridge University Press:  10 February 2011

B. Matterstock
Affiliation:
Ecole Polytechnique Fédérale Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland).
E. Conforto
Affiliation:
Ecole Polytechnique Fédérale Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland).
T. Kruml
Affiliation:
IPM, Zizkova 22, 616 62 Brno, Czech Republic
J. Bonneville
Affiliation:
Ecole Polytechnique Fédérale Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland).
J. L. Martin
Affiliation:
Ecole Polytechnique Fédérale Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland).
Get access

Abstract

Polycrystals of binary Ni3Al with different compositions are deformed in compression between 300K and 1300K. They exhibit a strength anomaly with peak temperatures between 800K and 950K. Below the peak, the aluminium rich compounds are the strongest ones while the nickel rich compounds are the weakest ones. As the aluminium content increases, the complex stacking fault energy, measured through weak beam experiments, increases as well. This confirms the cross slip mechanism of mobile dislocation exhaustion through Kear-Wilsdorf lock formation. A ‘ductile-to-brittle transition’ is observed at 1000K. Fracture occurs along grain boundaries, the strength of which decreases as environmental effects are enhanced at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spditig, P., Bonneville, J. and Martin, J.L., J. Phys. III France, 4 (1994) 1017.Google Scholar
2. Aoki, K. and Izumi, O., Trans. JIM, 19 (1978) 203.CrossRefGoogle Scholar
3. Weihs, T.P., Zinoviev, V., Viens, D.V. and Schulson, E.M., Acta metall., 35 (1987) 1109.CrossRefGoogle Scholar
4. George, E.P. and Liu, C.T. in High-Temperature Ordered Intermetallic Alloys VI, edited by J.A. Horton, I. Baker S. Hanada, R.D. Noebe and D.S. Schwartz (Mat. Res. Soc. Proc. 364, Pittsburgh, PA, 1995) pp. 11311145.Google Scholar
5. Chiba, A., Hanada, S., Watanabe, S., Abe, T. and Obana, T., Acta metall., 42 (1994) 1733.CrossRefGoogle Scholar
6. Takeyama, M. and Liu, C.T., Acta metall., 37 (1989) 2681.CrossRefGoogle Scholar
7. Takeyama, M. and Liu, C.T., Mat. Scie. Eng., A153 (1992) 538.CrossRefGoogle Scholar
8. Bonneville, J., Spatig, P. and Martin, J.-L. in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J. A., Baker, I. Hanada, S., Noebe, R.D. and Schwartz, D.S. (Mat. Res. Soc. Proc. 364, Pittsburgh, PA, 1995) pp. 369374.Google Scholar
9. Lopez, J.A. and Hancock, G.F., Phys. Stat. Sol. (a), 2 (1970) 469.CrossRefGoogle Scholar
10. Noguchi, O., Oya, Y. and Suzuki, T., Metall. Trans., 12A (1981) 1647.Google Scholar
11. Kruml, T., to be published.Google Scholar
12. Schaublin, R. and Stadelmann, P., Mat. Scie. Eng., A164 (1993) 373.CrossRefGoogle Scholar
13. Kruml, T., Martin, J.L., Viguier, B., Bonneville, J. and Spatig, P., Mat. Scie. Eng., A239–240 (1997) 174.CrossRefGoogle Scholar
14. Liu, C.T., White, C.L. and Horton, J.A., Acta metall., 33 (1985) 213.CrossRefGoogle Scholar
15. Takeyama, M. and Liu, C.T., Acta metall., 36 (1988) 1241.CrossRefGoogle Scholar
16. Omri, M., Tete, C., Michel, J.-P. and George, A., Phil. Mag. A, 55 (1987) 601.CrossRefGoogle Scholar