Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T07:18:10.871Z Has data issue: false hasContentIssue false

Effect of Nh3/SiH4 Gas Ratios of Top Nitride Layer on Stability and Leakage in a-Si:H Thin Film Transistors

Published online by Cambridge University Press:  10 February 2011

R.V.R. Murthy
Affiliation:
E&CE Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, murthy@venus.uwaterloo.ca
Q. Ma
Affiliation:
E&CE Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, murthy@venus.uwaterloo.ca
A. Nathan
Affiliation:
E&CE Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, murthy@venus.uwaterloo.ca
S.G. Chamberlain
Affiliation:
DALSA Inc., 605 McMurray Rd., Waterloo, Ontario, Canada, N2V 2E9
Get access

Abstract

In this paper, we present measurement results of stability and leakage current characteristics in inverted staggered hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) for different compositions of the top (passivation) nitride (a-SiNx:H). Here, we varied the deposition parameters, i.e., the ammonia (NH3) to silane (SiH4) gas ratio, of the passivation material for fixed composition of the (nitrogen-rich) gate nitride. When stressed with a prolonged gate bias, the observed shift in both threshold voltage (VT) and leakage current was largest in samples where the gas ratio (R = NH3/SiH4) was small. In the samples considered, R varied from 5 to 25. The shift in VT can be attributed to injection of energetic carriers from the a-Si:H and their subsequent trapping in the top a-SiNx:H layer. The trapping is reduced when the layer is nitrogen-rich.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tsukada, T. in Flat Panel Display Materials II, edited by Hatalis, M.K., Kanicki, J., Summers, C.J., Funada, F. (Mater. Res. Soc. Symp. Proc. 424, Pittsburgh, PA, 1996) pp. 38.Google Scholar
2 Street, R.A., Weisfield, R., Nelson, S., Nylen, P. and Wu, X.D. in Amorphous Silicon Technology, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K., LeComber, P.G. (Mater. Res. Soc. Symp. Proc. 297, Pittsburgh, PA, 1993) pp. 957962.Google Scholar
3 Schropp, R.E.I. and Verwey, J.F., Appl. Phys. Lett. 50, 185 (1987).Google Scholar
4 Hiranaka, K., Yoshimura, T. and Yamaguchi, T., J. Appl. Phys. 62, 2129 (1987).Google Scholar
5 Powell, M.J., IEEE Trans. Electron Devices 36, 2753 (1989).Google Scholar
6 Nakamura, T., Yamada, T., Takinami, M., Suzuki, T., Hamano, T., Ozawa, T., Tomiyama, S., MacDonald, D., Weisfield, R., Fennell, L., Tuan, H. and Thompson, M. in International Electron Devices Meeting, edited by Griffing, B. (Electron Devices Society of IEEE, New York, 1988) pp. 272275.Google Scholar
7 Choi, H.S., Kim, Y.S., Lee, S.K., Yoon, J.K., Park, W.S. and Han, M.K. in Amorphous and Microcrystalline Silicon Technology, edited by Schiff, E.A., Hack, M., Madan, A., Powell, M. and Matsuda, A. (Mater. Res. Soc. Proc. 336, Pittsburg, PA, 1994) pp. 793797.Google Scholar
8 Possin, G.E. and Su, F.C. in Amorphous Silicon Technology, edited by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G. and Hamakawa, Y. (Mater. Res. Soc. Proc. 118, Pittsburg, PA, 1988) pp. 255260.Google Scholar
9 Slade, H.C., Shur, M.S., Deane, S.C. and Hack, M., Appl. Phys. Lett. 69, 2560 (1996).Google Scholar
10 Murthy, R.V.R., Periera, D., Park, B., Nathan, A. and Chamberlain, S.G., to be presented at 1998 MRS Spring Meeting, San Francisco, CA.Google Scholar