Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T02:14:02.561Z Has data issue: false hasContentIssue false

Effect of Mo Doping and Heat Treatment on Microstructure and Electrochemical Performance of Vanadium Oxide Nanotubes

Published online by Cambridge University Press:  01 February 2011

Liqiang Mai
Affiliation:
Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 Hubei, P. R. China
Wen Chen
Affiliation:
Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 Hubei, P. R. China
Congsheng Jiang
Affiliation:
Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 Hubei, P. R. China
Qing Xu
Affiliation:
Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 Hubei, P. R. China
Junfeng Peng
Affiliation:
Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 Hubei, P. R. China
Quanyao Zhu
Affiliation:
Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 Hubei, P. R. China
Get access

Abstract

Mo doped vanadium oxide nanotubes (VONT) were formed via a rheological phase reaction followed by self-assembling process and were heated at 400 □ in an inert atmosphere. The nanotubes were characterized by SEM, HRTEM, XRD, FTIR, electrochemical investigation, etc. In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.99Mo0.01)xONTs increases owing to replacement of some V in nanotubes by Mo with a larger ionic radius, resulting in a shorten diffusion length of Li ions and an improved electrochemical performance. The electrochemical performance of (V0.99Mo0.01)xONTs is further enhanced by removing the residual organic template by heating in an inert atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature. 3459, 56 (1991).Google Scholar
2. Lutta, S. T., Dobley, A., Ngala, K., Yang, S., Zavalij, P. Y. and Whittingham, M. S., Mat. Res. Soc. Symp. Proc. 703, V8.3.1 (2002).Google Scholar
3. Philippe, L. and Christophe, T., Solid State Sciences 4, 217 (2002).Google Scholar
4. Jin, P. and Tanemura, S., Thin Solid Films 281–, 239 (1996).Google Scholar
5. Chandrappa, G. T., Steunou, N. and Livage, J., Nature 416, 702 (2002).Google Scholar
6. Demeter, M., Neumann, M., Postnikov, A.V., Cherkashenko, V.M., Galakhov, V.R., Kurmaev, E.Z., Surface Science 482–485, 708 (2001).Google Scholar
7. Mai, L.Q., Chen, W., Xu, Q., Zhu, Q.Y., Han, C.H. and Peng, J.F., Solid State Commun. 126, 541 (2003).Google Scholar
8. Yu, N., Simpson, T. W., Mclntyre, P. C., Nastasi, M. and Mitchell, I. V., Appl. Phys. Lett. 67, 924 (1995).Google Scholar
9. Chen, W., Mai, L. Q., Xu, Q., Zhu, Q. Y. and Peng, J. F., Key Eng. Mater. 249, 145(2003)Google Scholar
10. Cho, J., Kim, Y.J. and Kim, T. J., Chem. Mater. 13, 18 (2001).Google Scholar
11. Cho, J., Kim, Y.J. and Park, B., J. Electrochem. Solid St. 4, A159 (2001).Google Scholar
12. Krumeich, F., Muhr, H.J., Niederberger, M., Bieri, F., Schnyder, B. and Nesper, R., J. Am. Chem. Soc. 121, 8324 (1999).Google Scholar
13. Han, W., Fan, S. S. and Li, Q., Phys. Lett. 265, 374 (1997).Google Scholar
14. Batista de Carvalho, L. A. E., Lourenço, L. E. and Marques, M. P. M., J. Mol. Struct. 482, 639 (1999).Google Scholar
15. Fischer, W. B. and Eysel, H. H., J. Mol. Struct. 415, 249 (1997).Google Scholar
16. Imammura, D. and Miyayama, M., Solid State Ionics 161, 173 (2003).Google Scholar
17. Castro-Garcia, S., Castro-Couceiro, A., Senaris-Rodriguez, M. A., Soulette, F. and Julien, C., Solid State Ionics 156, 15 (2003).Google Scholar