Skip to main content Accessibility help
×
Home

Effect of Lt GaAs on Epitaxial Al/GaAs Schottky Diode Characteristics

  • Kai Zhang (a1) and D. L. Miller (a2)

Abstract

The effect of LT GaAs on the effective barrier height of the epitaxial Al/GaAs Schottky contact was investigated for the first time by inserting a thin LT GaAs layer (50 ∼ 500Å) between the in situ deposited Al film and conventional MBE GaAs epitaxial layer. The activation energy plot of saturation current for the devices showed that the effective barrier height exhibits a dependence on LT GaAs thickness and reaches a saturated barrier height when the LT GaAs layer exceeds a critical thickness. Compared to the samples which had no LT GaAs layer, the effective Schottky barrier height was decreased from 0.79 eV to 0.35 eV for the n-GaAs samples, and increased from 0.55 eV to 0.72 eV for the p-GaAs samples. The Schottky barrier height modification achieved by LT GaAs is tentatively explained in the terms of a bulk Fermi level pinning model. The work described here suggests that LT GaAs can be used as a defect source with controlled thickness to study defect associated phenomena such as Schottky barrier height modification.

Copyright

References

Hide All
1. Smith, F. W., Calawa, A. R., Chen, Chang-Lee, Mahoney, M. J., IEEE Electron Device Letters 9, 77 (1988).
2. Kaminska, M., Liliental-Weber, Z., Weber, E. R., and George, T., Kortright, J. B., Smith, F. W., Tsaur, B -Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).
3. Yu, Kin Man and Liliental-Weber, Z., Appl. Phys. Lett. 59, 3267 (1991).
4. Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).
5. Liliental-Weber, Z., Cooper, Greg, Mariella, Raymond Jr, Kocot, Chris, J. Vac. Sci. Technol. B 9, 2323 (1991).
6. Ashok, S., Wang, Y. G., and Nakagawa, O. S., Appl. Phys. Lett. 57, 1560 (1990), and the references therein
7. Zhang, T., Sigmon, T. W., Weiner, K. H., and Carey, P. G., Appl. Phys. Lett. 55, 580 (1989).
8. Zhang, T., and Sigmon, T. W., Appl. Phys. Lett. 58, 2785 (1991).
9. Walukiewicz, W., J. Vac. Sci. Technol. B 5, 1062 (1987); Phys. Rev. B 37, 760 (1988).
10. Bennett, R. J., IEEE Transactions on Electron Devices 34, 935 (1987).
11. Wang, W. I., J. Vac. Sci. Technol. B 1, 574 (1983).
12. Missous, M., Rhoderick, E. H., and Singer, K. E., J. Appl. Phys. 60, 2439 (1986).
13. Shen, H., Taysing-Lara, M., Calderon, L., Pamulapati, J., Dutta, M., and Fotiadis, L., presented at SPIE's Symposium on Compound Semiconductor Physics and Devices, Somerest, NJ, 1992 (to be published).
14. Look, D. C., Walters, D. C., Manasreh, M. O., Sizelove, J. R., Stutze, C. E., and Evans, K. R., Phys. Rev. B 42, 3578 (1990).
15. Manasreh, M. O., Look, D. C., Evans, K. R., and Stutz, C. E., Phys. Rev. B 41, 10272 (1990).
16. Yamamoto, H., Fang, Z -Q., and Look, D. C., Appl. Phys. Lett. 57, 1537 (1990).

Related content

Powered by UNSILO

Effect of Lt GaAs on Epitaxial Al/GaAs Schottky Diode Characteristics

  • Kai Zhang (a1) and D. L. Miller (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.