Skip to main content Accessibility help

Effect of Laser Illumination on Oxidization of Porous Silicon

  • L. Z. Zhang (a1), J. C. Mao (a1), B. R. Zhang (a1), W. X. Zhu (a2), Y. L. He (a3), H. Z. Song (a1), J. Q. Duan (a1) and G. G. Qin (a1)...


We have studied the effect of laser illumination (argon laser line of 488 nm) on the oxidization process of the inner surfaces of porous silicon (PS) by measuring the photoluminescence (PL), Fourier-transform infrared (FTIR) absorption and x-ray photoelectron spectroscope and contrasted the variations of PL and FTIR spectra of the PS treated in the following four ways: 1. In vacuum with laser illumination (LI) with power density of 12 mW / mm2. 2. In oxygen with LI. 3. In oxygen without LI. The times for all the above three treatments were 1 h. 4. Storage in air for 2 months without LI. The PL peak of PS showed serious degradation and a blue shift in case 2 but only a moderate degradation and no shift in case 1. The results of FTIR absorption show that the LI in an atmosphere of oxygen enhanced greatly the increase of oxygen-related absorption bands and the decrease of various silicon-hydrogen vibrational mode absorption bands.



Hide All
1. Uhlir, A., Bell Sys. Technol. J. 35, 333 (1956).
2. Turner, D.R., J. Electrochem. Soc, 105, 402 (1956).
3. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).
4. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 8561 (1991).
5. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1991).
6. Pickering, C., Beale, M.I.J., Robbins, D. J., Pearson, P.J., and Greet, R., J. Phys. C: Solid State Phys. 17, 6535 (1984).
7. Brandt, M.S., Fuchs, H.D., Stutzman, M., Weber, J., and Cardona, M., Solid State Commmun. 81, 307 (1992).
8. Tsai, C., Li, K.H., Sarathy, J., Shin, S., and Campbell, J.C., Appl. Phys. Lett. 59, 281 (1991).
9. Xu, Z. Y., Gal, M., and Gross, M., Appl. Phys. lett. 60, 1375 (1992)
10. Canham, L.T., Houlton, M.R., Leong, W.Y., Pickering, C., and Keen, J.M., J. Appl. Phys. 70, 422 (1991).
11. Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).
12. Zhang, L.Z., Zhu, W.X., Mao, J.C., Zhang, B.R., Duan, J.Q., and Qin, G.G., Chinese J. Semiconductors, 13, 715 (1992);
Zhu, W.X., Gao, Y.X., Zhang, L.Z., Zhang, B.R., Mao, J.C., Duan, J.Q., and Qin, G.G., to be presented in Superlattices and Microstructures.
13. Kaiser, W., Kech, P.B., and Lange, C.F., Phys. Rev. 101, 1264 (1956).
14. Bordsky, M.H., Cardona, M., and Cuomo, J.J., Phys, Rev. B 16, 3356 (1977).
15. Wagner, H., Butz, R., Backes, U., and Bruchmann, D., Solid State Commun. 38, 1155 (1981).
16. Chabal, Y.J., Bigashi, G.S., Raghavachari, K., and Burrows, V.A., J. Vac. Sci. Technol. A7, 2104 (1989).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed